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INTRODUCTION TO SOUPAC

A User's Guide

The SOUPAC System

The University of Illinois SOUPAC system consists of (l) a library of

statistical data processing programs residing in the University of Illinois

Department of Computer Science IBM 36O system, (2) programmed procedures

necessary to communicate among various data storage devices, the data pro-

cessing programs, and SOUPAC library subroutines, (3) a special program

called the syntax interpreter which translates the instructions on SOUPAC

program cards into instructions to the IBM 36O computer.

To use the SOUPAC system, appropriate commands must be issued to the

computer by means of a program card deck. If the user's data is on punched

cards, in contrast to disk or tape, then these data cards are submitted with

the program deck.

The program deck is made up of (l) Job Control Language cards , usually

referred to as JCL cards and sometimes called 36O system cards, which tell

the computer under which problem specification number (PS number) the pro-

gram is to be run and that the SOUPAC system is to be activated, and which

may also communicate additional information, especially with respect to

special peripheral storage device requirements, to the computer; (2) SOUPAC

statement cards which, with a few exceptions, contain the names of the

SOUPAC programs being used for data processing in the job and the suboperations

if any, particular to the programs. Some of the statement cards require

program constants, or parameters , to be assigned by the user to suit his own

particular analysis.

Example 1 shows a typical SOUPAC job. Each line of Example 1 represents

a separate punched card. Each letter or character on a given line represents

a separate column on the punched card, with the leftmost letter or character

iii



representing column one. The following representation of a card deck will be

used thoughout this manual.

Example 1

.

A Complete SOUPAC Job

/*ID PS=92li|,DEPT=PSYCH,NAME=SMITH
// EXEC SOUPAC
//SYSIN DD *

CORREL (CARDS) (PRINT) (SI/PRINT)
PRINC (S1)(S2/P)( )(100)(1).
VARIM (S2) (PRINT).
ENDS
DATA (U)(UF2.0)
1 U 2

-6301
2 7 8 3

0-1 k

2 3 2 8

1562
8911
12 2 7

7060
k 7-6-2

-1 U-2
Q 3 h 6

END#
/*

The JCL statements are easily identified by either /* or // in the first

two card columns. In fact, any card which has /* or // in the first two columns

is considered to be a JCL card whether it was mean to be one or not. In Ex-

ample 1, the first three cards and the last card of the deck are JCL cards.

All remaining cards are either SOUPAC statements or data. The next three

cards initiate the SOUPAC CORRELATIONS, PRINCIPAL AXIS, and VARIMAX programs

in that order. The quantities in parentheses are the parameters for the re-

spective programs. (The collection of parameters for an individual program

is called the parameter string for that program.) The ENDS card, exactly one

of which is always present in a SOUPAC job, signals to the syntax interpreter

program that the next cards, if any, comprise a data deck. The DATA card

indicates to the computer how the data is punched on the next cards. The

END# card is a signal that the end of the data deck has been reached. The



last card is the end of file card which signals the computer that the end

of this job has been reached.

In the program in Example 1, as the reader will recognize after reading

subsequent sections, the output from the CORRELATIONS program is used in-

ternally and directly as input to PRINCIPAL AXIS, and similarly the output

from PRINCIPAL AXIS is the input to VARIMAX. The capability of running a

series of programs in sequence in this way in one SOUPAC job is one of the

great powers of the SOUPAC system.

II. More Information About Program Cards

A. The JCL or 360 system cards

The JCL cards are needed to run all IBM 360 jobs, not just SOUPAC jobs,

and are thus necessarily sometimes very complex. However, a SOUPAC job can

usually be run with the four cards discussed in greater detail below and

illustrated in Example 1.

1. ID card

This card has the form

/*ID [ accounting information ]

where the acounting information includes the PS number Identifying
the account against which the cost of the computer run is to be
charged, the department code associated with the account, the user's
name, and possibly some other information. This is always the first
program card.

Since ID card information requirements may change with the fre-
quent changes in the overall IBM 360 system configuration, the user
is urged to keep up to date on these requirements, and he should
address any questions about ID card makeup to the SOUPAC consultants.

A user who does not have an account with the Computer Services
Office will need to apply for one.

2. EXEC card

This card has the form

// EXEC SOUP
or

// EXEC SOUPAC



where the user designates SOUP to invoke 5 intermediate storage
devices and SOUPAC to invoke 15 (See page 2B. ) In some cases it

will be necessary to punch additional information on the EXEC
card (See page lA .

)

3. SYSIN card

This card has the form

//SYSIN DD *

and communicates to the computer that the cards following are
SOUPAC statement cards and data cards.

h. End of file card

This card has just /* punched in colvanns 1-2. It signals
the end of the complete job.

Additional JCL cards are needed in special cases, as when the input comes

from a user-supplied disk or tape rather than cards. A user who is not an

experienced programmer will require the assistance of a SOUPAC consultant in

such cases.

B. SOUPAC statement cards

There are three types of SOUPAC statements: the program parameter and

subparameter cards which are the basic SOUPAC statement cards, $ control

cards, and # control cards and prolog cards.

The latter two types of rather specialized cards are discussed in the

section Options to a SOUPAC Job . The individual program writeups in thir

manual describe how the particular program parameter cards are to be punched,

but a few general rules will be indicated here.

1. In general, program parameter and subparameter cards begin with a

three character code (mnemonic) which is usually the first three
letters of the program name or subparameter option name. Note
that in Example 1 the parameter cards have CORREL, PRINC , and VARIM.
In each case, all that is required is COR, PRI, or VAR; however, it

is often helpful in remembering what prograjn is being used, if one
writes out more of the program name than just the first three letters.

2. Mnemonics are followed by parameters to the program. Parameters for

the programs vary from program to program; parameters to all programs
are defined in this manual. See Table 1 for a list of parameter
types and their delimiters.



3. All parameters are "set off" by delimiters with different parameter

types being set off by different delimiters. In Example 1, each

program parameter is enclosed in a parenthesis pair, e.g. ( ).

The CORREL statement in Example 1 has three parameters, the PRINC

statement has 5 parameters, and the VARIM statement has 2 param-

eters.

k. A period, sometimes called the terminal delimiter , must always be

punched after the last parameter used.

5. Blanks may be used freely to improve readability, and you may punch

out to column 80.

6. Since all parameters are clearly separated by delimiters, any

comments desired may be put before, between or after parameters.

For example, the following is a valid SOUPAC control statement:

CORRELATIONS OF RELIGIOUS ATTITUDE SURVEY WITH INPUT FROM (CARDS)

AND OUTPUT TO (PRINT) AND (PRINT).

and is equivalent to:

COR ( CARDS ) ( PRINT )( PRINT )

.

Parameter Types and Their Delimiters

Type

Address

Delimiters

( )

Integer (also called fixed
point constant)

Index set - integer

Real (also called floating
point constant)

Index set - real

Labels and character strings

( )

( )

Examples

(SI) (P)

(1) (20)

(10,20)

n.,20. ,2.*

"ALPHA"

7. Some SOUPAC programs have subparameter options. Common examples of
programs which do and do not have subparameter statements are:

Subparameter statements

BALANOVA
FREQUENCY
MATRIX
TRANSFOroiATIONS
and others

No subparameter statements

AUTOCORRELATIONS
BISERIAL CORRELATIONS
CORRELATIONS
OBLIMAX
PRINCIPAL AXIS
RANK ORDER
STANDARD SCORES
STEPWISE MULTIPLE CORRELATION
T-TEST
VARIMAX
and others
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Programs which have subparameter statements must "be terminated "by an
ENDP card; programs which do not have subparameter statements must
not be terminated by an ENDP card.

Example 1 shows three programs which must not have ENDP cards.
Example 2 shows two programs which must have ENDP cards. Within the
TRMSFOmiA-TIONS program, in Example 2, we have used three subparam-
eter statements - ADD, DIVIDE, and OUTPUT. Within the MATRIX program
in Example 2, we have used two subparameter statements - MO'VE and
MULTIPLY. Specific descriptions of the subparameter statements can
be found in the respective individual program descriptions

Example 2.

Sample SOUPAC Statements, Subparameter Statements and ENDP Card

TRA( CARDS).
ADD(8)(9)(8).
DIV(8)*2*(8).
0UT(S1)(1,8).
ENDP
MAT.

M0VE(CARDS(S2)).
MUL(S1)(S2)(S3/P(F)).
ENDP

C. The Interaction of SOUPAC Programs

The point of running a SOUPAC job is to input a set of numbers and re-

ceive as output a set of answers. Since each research problem is unique, it is

usually the case that no single SOUPAC program will do the complete analysis

required. Example 1 is a classic example of how output from one SOUPAC program

is used as input to another SOUPAC program. Data input and output to programs

is in the form of data matrices . A data matrix is a rectangular array of data;

the terms row and column of a data matrix have the obvious intuitive meanings.

Data matrices, when used as input or output to a program, are references by

use of an addr ess , one of the parameter types listed in Table 1.

By reading the description in this manual of the CORRELATIONS program, we

find that the third parameter is the output address of the Pearson product-

moment correlation matrix. By reading the description of the PRINCIPAL AXIS

program we find that the first parameter is the input address and the second



parameter is an output address. Similarly, in the VARIMAX program, the

first parameter is an input address and the second parameter is an output

address.

We see in Example 1 that the output address of CORRELATIONS is used

as the input address to PRINCIPAL AXIS and that the output of PRINCIPAL AXIS

is used as input to VARIMAX. In this manner we process the raw data, step by

step, to derive PRINCIPAL AXIS factors rotated according to the VARIMAX

criterion.

Notice that implicit in a set of SOUPAC statements is an order in which

calculations are performed. In Example 1, the CORRELATIONS program is executed

first, then PRINCIPAL AXIS, then VARIMAX. Understanding this principle is

essential for understanding how SOUPAC performs input and output of data

matrices. In Example 1 we saw data matrices passed from program to program

by being stored on intermediate storage, labeled SI, S2, and S3.

Example 3a.

Input of One Card Data Deck

MTRIX
MOVE (CARDS) (Si).

ENDP
CORREL ( SI ) ( PRINT ) ( S3 /PRINT )

.

STAI^DARD SCORES ( SI ) ( S2/PRINT ) ( PRINT ) ( 1 ) .

Example 3b.

Input of Two Card Data Decks

CORREL ( CARDS ) ( PRINT ) ( S3/PRINT )

.

STANDARD SC0RES(CARDS)(S2/PRINT) (PRINT) (1).

Example 3 points out a critical detail in the proper use of addresses.

In Example 3a one card deck is read and stored as a data matrix on SI by use

of the MATRIX MOVE suboperation. This matrix is then used as input to both

CORRELATIONS and STANDARD SCORES. Notice that using SI as input to CORRELA-

TIONS does not destroy the contents of SI and that the data input to STANDARD



SCORES is the same as though CORRELATIONS had not been executed. As long as

an address is used only for input, the matrix stored at that address remains

unchanged.

Example 3b is similar to Example 3a in that the input address to

CORRELATIONS and STANDARD SCORES is again the same; however, in Example 3b

this address is now CARDS, not SI.

Using CARDS as an address differs

from using an intermediate storage file such as SI or S2 in that subsequent

uses of CARDS mean "read the next card data deck."

Therefore, Example 3b will read two data card decks, the first one being

read by CORRELATIONS and the second one being read by STANDARD SCORES.

Consecut'Ve uses of an S-type address for input will cause the same data to

be read from that file each time; consecutive uses of CARDS for input will

cause the next card data deck to be read each time.

For a more complete discussion of SOUPAC addresses, read the section,

SOUPAC Input/Output and Intermediate Storage .

D. Placement of Data Decks

Whenever CARDS is used as an input address, a data deck will be read.

Each data deck must be preceded by a data format card and followed by an

END^ card . If more than one data deck is required, as would be the case in

Example 3b, the decks are placed in the order they will be read by the SOUPAC

control statements. See Example h for a SOUPAC job that uses more than one

data deck. Recall that there is one ENDS card in a SOUPAC job and its pri-

>nary function is to separate the SOUPAC statements from the data card decks.



Example k .

SOUPAC Job With Two Card Data Decks

/*ID PS=92li+ ,DEPT=PSYCH,NAME=SMITH
// EXEC SOUPAC
//SYSIN DD *

CORREL (CARDS) (PRINT) (S3/PRINT).
STANDARD SCORES (CARDS) (S2/PRINT) (PRINT) (l).

ENDS
DATA(10)(10F6.2)

[data deck for CORRELATIONS Program]

END#
DATA(8)(8F10.3)

[data deck for STANDARD SCORES Program]

END#
/*

E. The Data Matrix

It is common practice to represent statistical data as a rectangular array

of numbers called a data matrix . This convention is quite natural since data

samples frequently are observations taken over sets of variables. For example,

suppose we have collected data on twenty people by asking them their sex, age,

height, weight, and income. If we wrote this information in tabular form on a

piece of paper, we would probably have six columns; one column for the subjects'

names, and one column each for each of the five variables: sex, age, weight,

height and income. There would be twenty entries in this table, one for each

subject. What we have then in tabular form is a rectangular representation of

our data sample with the variables, including the name, as columns, and the

observations as rows.

From this representation it is a short step to punching the table onto cards,

one card per person. If there are more variables per observation than will fit

on one card, we use as many consecutive cards as are necessary. To make the job

of setting up a data matrix for reading as simple as possible, the SOUPAC user

should always follows these rules

:



1. Begin each observation on a new card.
2. If there is more than one card per observation do not "split"

a multi-column variable across a card boundary. For example,
if income takes six columns, and there are three columns
left on the current card, go to a new card. Do not put the
first three columns of income on the end of the current card,
and the last three columns on a new card.

3. Always have the number of cards per observation constant with-

in a given data deck.
h. Always punch variables in identical card columns for each ob-

servation. Each observation of a given data deck should have
the same card and card column organization.

F. The Data Format Card and the END# Card

Whenever CARDS is used as an input address, the SOUPAC input routines must

l.'.ov huw the input data matrix is represented on punched cards. In particular,

-"ity must know:

1. What are the dimensions (number of rows and columns) of the
data matrix being represented.

2. Which card columns represent which variables.
3. How many cards per observation (row) are there.

'^he function of the data format card and the END# card is to provide precisely

.''.i."; information.

Data format cards have the following form:

""/'vr-i'' [number of variables]) ([format])

For example. Example 1 had the data format card:

..y.TMh) (14F2.0)

Notice that the number of columns (variables) of the data matrix

must be explicitly indicated to the computer. The format is used to



describe how one observation is punched. All observations are assiomed to

have the same card column structure so that the computer is able to deter-

mine the number of rows of the data matrix by simply reading cards under

control of the format provided until it finds the END// card. Since the

format defines one observation, implicit in this definition is how many

cards per observation are used.

The format is a FORTRAN type format and follows all the

rules of FORTRM with the added restriction that it may not be longer

than 592 characters. If the format itself does not fit on one card, one simply

continues punching the format onto the next card. No continuation marks are

required since the computer stops reading format cards when it finds the

right parenthesis which closes the format string.

It is possible to write very complex formats, and the user who wishes to

explore such possibilities is referred to any standard FORTRAN language text.

For most uses, however, the X and F field specifications, discussed in detail

below, will be quite adequate.

It is conventional in computer programming to refer to a particular

group of contiguous columns on a data card as a field . Hence a four digit

number will occupy a field of at least four columns when punched on a data

card, and the field will be larger if an algebrai c sign and/or a decimal

point is also punched. The field specifications in a format tell the computer

which fields are assigned to the variables being input and describes how the

nixmbers are to be interpreted. In particular:

1. The field specification nX, where n is an integer, tells the input

routine to skip n columns. These n colimins are said to be a skip field.

2. The field specification Fw.d, where w and d are integers, and w > d,

specifies that a field of w columns is to contain a decimal niimber and that

in case the decimal point is not actually punched then the number is to be



divided by 10 to the d power before being stored in the computer. However,

if tlie decimal point is actually punched then it overrides the d indicator.

(Remember - w must include a column for the decimal point!) For examiile, the

field specification T7 .2 means that the corresponding field of 7 columns v.-on-

o
tains a decimal number which is to be divided by 10", or 100, unless a

decimal point is punched.

The user should be warned that any blanks in a field read by F field

specification are read as zeroes! Suppose that card columns 6-10 are read

according to F5.1 and 572 is punched in columns 6-8, then the numb^-r stored

by the computer is 57200/10 or 5720.

The field specifications must be separated by commas, but a sequence such

as F6.3, F6.3, T6.3, F6,3 can be represented by ^f6.3, which saves space and

i.iyj'Uiiehing labor. This representation is used in Rxainpxe 1 where DATA(i4)

(1(F2.0) is punched instead of DATA(U) (F2.0,F2.0,F2.0,F2.0) .

Data fields on the data cards are represented left to right in the

fi^niiat. Example 'yi. indicates that we have ten variables and that these trn

variables are punched in consecutive five column fields beginning in column

sixteen. Notice that we have defined only the last 65 of 80 card columns.

Tht3 first 15 columns will simply be ignored.

Tf an observation goes over one card, use the / (slash) to indicate that

the data fields continue on the next card.

Hint: The number of data cards considered to be on observation is the

number of slashes in the format plus one, i.e. no slashes implies one card

per observation, one slash implies two cards per observation.

With minimum practice, format reading becomes almost automatic. Example

5b can be read as follows:



1. There are twenty variables in this data matrix.

2. a. Beginning in card column one, skip five columns.

b. Read one six column variable.

c. Skip two card columns.
d. Read one three column variable.
e. Skip four card columns.
f. Read nine variables of six columns each.

g. Go to a second card (ignoring the last six col\mins of the

current card)

.

h. Skip the first twenty colxomns of the second card. .

i. Read nine variables of six columns each.

Always remember that there are 80 columns on a punched card. If a format

specifies a card which has more than 80 card columns, an error will result.

Example 5c shows a format which specifies 90 columns for the first card of a

two-card observation. The use of this card will result in an error.

The number of variables should agree with the nimiber of field specifica-

tions, including replications, in the format. Experienced programmers can

sometimes take exception to this rule in order to shorten format length, but

it is a dangerous practice, and the discrepancy between these two counts is

one of the more frequent errors made in punching the data format card.

Example 5a.

Sample Data Format Card

DATA (10) (15X,10F5.0)

Example Sb

.

Data Format Card Indicating Two Cards Per Observation

DATA ( 20 ) ( 5X

,

F6 . , 2X ,F3 . , UX

,

9F6 . 0/ 20X

,

9F6 . )

Example 5c

.

Invalid Data Format Card - More Than 8o Columns Specified

DATA(20)(10X,10F8.0)

Example 5d

.

More Variables Specified Than Data Fields

DATA(21)(5X,F6.0,2X,F3.0,Ux,9F6.0/20X,9F6.0)

Once a data deck has been read into SOUPAC , all information concerning

which card columns contained which variables is lost. Within SOUPAC a data

sample is handled as a data matrix and variables are referenced by variable

number, not by card column.



G. Keypunching Hints

1. V/henever possible code variables using numbers instead of letters,

^or example, code sex as 0, 1 rather than F, M.

2. Avoid confusing 0, the letter oh, and 0, the number zero. Oh and

zero have different hole codes in the punched card. To help avoid possible

'^onfusion, it is common to see the letter written as 0. Unless the meaning

of is clear from the context in which it is used, assume that means the

letter and means the number (Warning, other computer installations often

'"iisagree on t>)is convention and represent zero by 0)

.

3. Code missing data as blanks (no punches). Gome researchers code

missing data as 9, 99» ^i" 999 depending upon the number of card col^umns which

I he variable uses. This method has the disadvantage that once the data cards

been read the variables are treated as matrix columns, and missing data

are not coded consistently for all variables. ^.Iso, those SOUPAC pro-

^-rains which correct for missing data presume that missing data has been coded

ae H blank. V/ithin the computer a blank is represented as -0 (minus zero).

h. Punched cards which are warped or ragged-edged are likely to be re-

"lectf-d, or perhaps misroad, by the card reader, and such cards should be

rep.iaced before they cause problems. The /*ID card in front of the deck

nnd the /* card at the end of the deck are especially susceptible to rapid

5. Overpunching is the attempt, usually unsuccessful, to punch more

'.f ;,ririntion in One colimn -f ? card than is normally allowed. The result is

I'i.en undefined hole combinations which the card reader rejects as a "read

'•qcck." Avoid overpunching.

Programming errors are difficult to avoid in writing even simple programs.

.., 1" ill in the detecti-r nnd ci:~-:->'ecting of errors, or "debugging," is an

'J) '.rtant facet of the progranm.ing art. The occasional SOUPAC user usually



does not acquire the experience necessary to 'become adept at detecting errors,

but there are a number of things that he or she can do to minimize them and

detect the more obvious ones.

One of the most simple and important error saving strategies is one

that is seldom used - avoid rushing the job! Several days should be

allowed for writing and debugging short programs and as much as several weeks

for complex ones. Even when debugging the program is a minor problem, unex-

pectedly long turn-around times due to heavy job volumes or computer break-

downs can foul tight schedules. Long range planning is a key part of data

processing .

Programming errors can be broadly categorized into two types, depending

on whether they disrupt the translation of the program into machine instruc-

tions ( "compile-time" errors) or whether they disrupt the computer's actual

execution of the machine instructions ("execution-time" errors). Occurrence

of either type error will normally cause the computer to print an appropriate

error message for diagnostic purposes. The user will usually find that

compile-time errors, which are most often caused by mispunching or deleting

characters, are relatively easy to find. However, execution-time errors are

often due to incorrectly punching data or using an incorrect format statement,

resulting in unexpected numbers being processed, and considerable time and

ingenuity may be needed to run such an error to ground.

Here are some debugging hints:

1. Obviously the program deck should be carefully checked for keypunch-

ing errors before it is submitted to be run.

2. Make sure that the cards are in the correct order.

3. Missing ENDS and EWDP cards are a common source of error. Check

for these.

h. After correcting an error for which an error message has been ex-

plicitly generated by the computer, carefully reexamine the entire program.

MtvsBim



The cc-nputer may not detect all errors on the same run, and you nay find one

which the computer has not yet seen hut which would abort the next run.

5. Make sure that the parameters specified on the /*ID card are such

that the Job can run to completion.

6. TAKE YOUR TIME!



DATA AND MATRIX MANIPULATIONS PACKAGE





The data manipulative programs

As implied by the name, TRANSFORMATIONS is used for performing

data transformations often necessary in "setting up" data to be input

to one of the "cook-book" programs of the SOUPAC system. The user may

create new variables as linear combinations or as algebraic functions of

old variables, and the user may recede or alter data values on the basis

of test conditions by using the TRANSFORMATIONS program. To perform

matrix algebra operations with one or more matrices, to augment matrices either

row-wise or column-wise, to reorder, save or delete specific rows or

columns of a matrix, one would use the MATRIX program. MATRIX also has

the capability of printing, punching card decks, and reading and writing

tape and disk files in ways not available elsewhere in SOUPAC.

The TRANSFORMATIONS and MATRIX programs have a unique place in the

SOUPAC system. Although the remainder of the SOUPAC library performs

a large number of specialized statistical procedures, there are some

computations which are not represented by a uniquely written program.

However, by an imaginative utilization of the combined powers of

TRANSFORMATIONS and MATRIX it is possible to perform a virtually unlimited

range of established and experimental statistical techniques. It is a

common practice within the SOUPAC office to "check out" newly written

programs against results computed by TRANSFORMATIONS and MATRIX. -Conversely,

these two programs can be used as teaching tools by having students learn

the step-by-step computations and then checking the results against results

of the "cook-book" programs. Complete multiple regressions and analysis

of variance programs, for example, have been written in this manner. Sinr>o

most SOUPAC jobs require the use of TRANSFORMATIONS and MATRIX, a

familiarity with these two programs is basic to an effective use of the

SOUPAC system.





MATRIX

I. General Description

The MATRIX program is a data manipulating program for inputting and out-
putting, creating, performing matrix algebraic operations on, and generally-

handling data matrices. All the MATRIX suboperations are restricted to 1000
columns (variables). No absolute limit is set on the number of rows
(observations).

Standard SOUPAC address conventions are used including the use of the
character X to denote punched output, and (F) after a print to denote print
with F format. Also available and discussed in section III below is the use
of I for storing a matrix in memory, and the use of (L) after a print to
invoke the MATRIX labeling feature. All other restrictions are noted by the
discussion of the individual suboperation explanations.

;i. Parameters

A. Main Parameters

The MATRIX program is invoked by coding the name MATRIX, or simply the
mnemonic MAT on a program card. There are two optional parameters avail-
able which may be coded on the MAT card.

1. If it is desired that the program print, immediately prior to the
execution of each MATRIX subparameter operation, the time in seconds
since entry into the MATRIX program, code a (l) after the name MATRIX.
This option is not normally needed and is provided merely for giving
timing estimates. Example:

MATRIX (l).

2. The second optional parameter is coded as a (l) following the timing
estimate parameter. This second option is used to suppress printing
by the program of the number of rows and columns and the precision
of all answers, i.e. output, matrices. Normally, the program will
always print out this information. Example:

MATRIX 0(1).

If both options one and two are desired use:

MATRIX (1)(1).

If neither option is desired, as is generally the case, use:

MATRIX.

Note that as in all SOUPAC programs, the main program statement, and also
each subprogram statement, must be terminated by a period.
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B . Subparamet er s

Any MATRIX operation may be invoked by coding its mnemonic followed by
appropriate subparameters . All operations in MATRIX handle both single
and double precision matrices at the control of the user (see operations
SINGLE and DOUBLE). For an address not explicitly assigned either single
or double precision, MATRIX assumes a default of double precision for
output to the address. Terminate all subparameter statements with a
period.

To end a MATRIX program, place a card which has the characters END P
after the last MATRIX subparameter card. Since all MATRIX programs must
have at least one subparameter operation, an error will be signaled if a

MAT card is followed immediately by an END P card.

Input and output for I^IATRIX may be from any source, however, the
following rules must be observed:

1) Never use CARDS as input to any operation except MOVE
unless both the number of rows and the number of columns
have been specified on the DATA format card at the front
of the data deck.

2) You may never have an output address of only (PRINT) or
(P). All MATRIX output must go to some intermediate
storage location even when only printout is desired; for
example (Sl/P).

3) Avoid using the same address more than once on the same
parameter card unless otherwise noted in the description
of an individual operation. However, in those operations
which do permit using an address more than once as an
input address, CARDS may not be used as an input address
more than once. In all operations except INVERT, never
specify an output address which is the same as an input

address for that operation.

h) The contents of an input address remains unchanged during
the execution of an operation unless otherwise noted.

Following is a description of the subparameter operations currently in

the MATRIX program.
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mnemonic not es operation name examples

ABS Absolute value ABS ;si ) (S2).

ADD 1,2 ,5 Add ADD ;si ) (S2) (S3).

ALL 3 ,6 All ALL
ALL
ALL

;si

;si

;si

) "GT" *0* (S2).

) "NE" *-0* (S2) (2).

) "LE" (S2) (S3) (1,10,3).

ANY 3 ,6 Any ANY
ANY
ANY

;si

;si

;si

) "GE" (S2) (S3).

) "EQ" *1.* (S2) (1,2) (5)

) "LT" *99* (S2).

CHO 1+ Cholesky decomposition CHO ;si ) (S2).

COL 6 Column delete COL
COL

;si

;si

) (S2) (2).

) (S2) (10) (12,15).

CON Constant addition CON
CON

;si

;si

)
*2.* (S2).

) (S2) (S3).

COU Count COU
COU
COU

;si

;si

;si

) (S2).

) (S2) (1).

) (S2) (2).

CRO Cross product CRO
CRO

:si

;si

) (S2).

) (S2) (1).

DIA Diagonal to vector DIA ;si ) (S2).

DIM Dimension DIM ;si ) (S2).

DOU 2 Double precision DOU (S]-).

EJE Eject EJE.

E-D 1,2 ,5 Elementwise divide E-D ;si (S2) (S3).

E-M 1,2 ,5 Elementwise multiply E-M ;si ) (S2) (S3).

E-R Elementwise square root E-R ;si ) (S2).

EXP Expand EXP
EXP

:si

;si

)
*20* (S2).

) (S2) (S3).

FIL 2 File FIL ;si .

GEN 6 Generate GEN ;si 1 *i*.

HOR 1,2 ,5 Horizontal augment HOR ;si ) (S2) (S3).

IDE Identity matrix IDE ;^8 ) (SI).

INP Input INP
INP
INP

;si

:si

'SI

) (S2) ( ) (9) "(9F6.1)".

) (S2) ( ) (12).

) (I) (576) (10).

INY h Invert INV (

INV (

INV (

;si^

I)

si;

(S2).

(I).

(S2) (1) (1) *10.E-6*.

KRO Kronecker product KRO ( SI' (S2) (S3).

LAB 6 Label LAB .si' "SAMPLE l" "AGE" "SEX".

LAG Lag LAG (

LAG (

si;

si;

(2) (6) ( ) (S2).

(3) (M (1) (S2).

LOW Lower triangle LOW (

LOW (

si;

si;

(S2).

(S2) (1).
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mnemonic notes operation name examples5

MAX Maximum value MAX (

MAX (

MAX (

'si;

'si;

'Sl^

(S2).

(S2) (1).

> (S2) (2).

MIN Minimum value MIN (

MIN (

MIN (

'Sl^

;si^

'Sl^

) (S2).

) (S2) (1).

> (S2) (2).

MOV 2 Move MOV (

MOV (

:c)

:si

(SI).

) (S2).

MUL 1,^,5 Multiply MUL ('SI ) (S2) (S3).

OUT Output OUT (

OUT (

[SI

'SI

) (S2) "(10E16.9)".

) (S2).

PAR Partition PAR ;si ) (S2) (5) (10) (2) (21).

PER 6 Permutation PER 1[SI ) (2) (1).

PRI Print PRI [SI )
"(' •,10F13.^)".

PUN Punch PUN [SI ) "(8F10.3)".

REG Reciprocal REC [si ) (S2).

REM Remap REM [si ) (S2) (8).

REW 2 Rewind REW 'SI 1 •

ROW

RSD

6 Row delete

Reciprocal of Square

of Diagonal

ROW

Root
^^^^

RSD (

[SI

[si

SI'

) (S2) (1) (2) (3).

) (S2) (2,20,3) (3,20,3).

)(S3).

SCA Scalar multiply- SCA (

SCA (

>S1,

'SI'

) *.l* (S2).

) (S2) (S3).

SIN 2 Single precision SIN ( SI' •

SUB 1,2,5 Subtract SUB ('si' (S2) (S3).

SUM Sum SUM (

SUM (

SUM (

'si;

'si;

'si;

) (S2).

(S2) (1).

(S2) (2).

TRA h Transpose TRA ( si; (S2).

UPP Upper triangle UPP (

UPP (

SI'

'si'

(S2^.

(S2) (1).

VEC Vector to diagonal VEC (
SI' (S2).

VER 1,2,5 Vertical aiogment VER ( si' (S2^ (S3).

1. Conformability of input matrices is checked.

2. Up to twenty-one total addresses may be used.

3. A warning message is printed if no rows are output.

k. Any matrix which has been previously stored under the I address will
be destroyed.

5- An input address may be used more than once for input to the same
instruction.

6. As many arguments as are needed of the last argument type may be used.
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ABSOLUTE VAI,UE (mnemonic: ABS)

The ABSOLUTE VALUE operation has two address parameters, an input
address and an output address. The absolute value of each element of
the input matrix is taken and the result goes to the output address.
Example

:

ABSOLUTE VALUE (SEQ,3) (SEQ)+) .

ADD (mnemonic: ADD)

The ADD operation has from three to twenty-one address parameters.
The last address is the output address; all other addresses are for

input. Each input matrix must have the same nimiber of rows and coli:irans

as all other input matrices. An address may be used more than once

as an input address.
Corresponding elements of the first matrix through the next to

last matrix are added together, and the result goes to the output
addre s s . Example s

:

ADD (SEQ1)(SEQ4)(SEQ5).
ADD (SEQl) (SEQ4) (SEQ2) (SEQ3) (SEQ5) .

ALL (:mnemonic ALL

The ALL operation performs a particular test, specified by the
second operand as a relational operator, between a set of elements for
each input row and a floating point number specified by the third
operand. If all elements of the set for a given row pass the test,

that row is output to the output address.
The first parameter is the input address. The relational

operator is enclosed in quotation marks. The third operand may be
either a floating point number or an address in which case the
first element of the matrix is used as the floating point number.'
The six legal relational operators are "LT", "LE", "EQ", "NE",
"GT", and "GE". Remaining (optional) parameters are index
sets specifying which variables are to be included in the testing.
If no variables are specified, all variables are included in the
testing. Note that if only one variable is specified, the results
of the ANY and the ALL operation would be the same. Examples:

ALL (SEQl) "NE" *0.* (SEQ,2) .

ALL (SEQ3) "GE" (SEQU) (SEQ,1) .

ANY (mnemonic: ANY)

The ANY operation performs a particular test, specified by the
second operand as a relational operator, between a set of elements for
each input row and a floating point number specified by the third
operand. If any element of the set for a given row passes the test,
that row is output to the output address.
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The first parameter is the input address. The relational
operator is enclosed in quotation marks. The third operand may be
either a floating point number or an address in which case the
first element of the matrix is used as the floating point number.
The six legal relational operators are "LT", "LE", "EQ", "NE", "GT",

and "GE". Remaining (optional) parameters are index sets specifying
which variables are to be included in the testing. If no variables
are specified, all variables are included in the testing. Note that

if only one variable is specified, the results of the AFf and the ALL

operation would be the same. Examples:

ANY (SEQ2) "GT" *3.* (SEQl).

Pm (SEQl) "NE" *-0.* (SEQi+)(l,3).

CHOLESKY (Mnemonic: CHO)

The CHOLESKY operation decomposes a square symmetric matrix into
the product of an upper triangular matrix and a lower triangular
matrix such that the two triangular matrices are the transpose of
each other. This method of decomposition is sometimes called the
"square root" method. CHOLESKY has two operands, an input address
and an output address. The result which goes to the output address
is the lower triangular matrix resulting from the decomposition.

If the input matrix is not square, the "extra" rows or columns
are ignored. Additionally, if the square matrix is not symmetric,
the actual upper triangle of the matrix is effectively ignored
and is instead assumed to be identical to the lower triangle.
Example

:

CHOLESKY' (SEQl ) ( SEQ,2 )

.

If the input matrix on SEO 1 is

il -2 -h
-2 2 3

-k 3 6

the resulting matrix output to SEQ 2 is

2
-1
-2 1

COLUMN DELETE (mnemonic: COL)

The COLUMN DELETE operation specifies which columns of an input
matrix are to be deleted before sending the result to the output
address. The first parameter is the input address. The second
parameter is the output address. Colimms to be deleted are
specified by index sets following the output address. Examples:

COLUMN DELETE (SEQi+) (SEQ5K^) (5) (6) (8) (l3) (l5)

.

COLUMN DELETE (SEQl) (SEQ2) (l, 30, 3^ •
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CONSTMT (mnemonic: CON)

The CONSTAlfT operation has three parameters. A floating point
number specified by the second operand is added to every element of
the matrix specified by the first operand. The result goes to
the third operand address.

The second operand may be either a floating point number enclosed
in asterisks or a standard SOUPAC input address. If an address is

specified, the first element of the matrix at the address is used for
the floating point niomber. Examples:

CONSTAlilT (SEQl) ^4.5* (SEQ2).
CONSTANT (SEQ,1) (SEQ3) (SEQ^l-)

.

COUNT (mnemonic: COU)

The COUNT operation has three operands; an input address, an output
address, and an option indicator.

If option is specified, the resulting output matrix is a single
row vector containing a count of the number of elements, excluding
missing data, of each column of the input matrix. Specifying no
option is equivalent to specifying option 0.

If option 1 is specified, the resulting output matrix is a single
column vector containing a count of the number of elements, excluding
missing data, ,of each row of the input matrix.

If the option is specified as any number other than or 1, a

single, element matrix is output which contains a count of the
number of elements, excluding missing data over the entire matrix.
Examples

:

COUIJT (SEQl) (SEQ>).

COUNT (SEQ5)(SEQ3)(l).
COUNT (SEQ,2)(SEQ3)(2).

CROSS PRODUCT (mnemonic: CRO)

The CROSS PRODUCT operation has three operands, an input address, an

output address, and one option flag. The output address is the square

symmetric matrix
T

X X
,T

which results from the matrix multiplication of X and X, where X is the

input matrix and X*^ is the transpose of the input matrix.

The option flag, coded as (l), is used whenever it is desired that the

X matrix used in forming the cross products matrix is the input matrix

with an additional column of I's as the first column of the matrix. Note

that when the option is used, the output matrix will have one more row

and colimin than if the option is not used.
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DIAGONAL (mnemonic: DIA)

The DIAGONAL operation has two operands, an input address and
an output address. The main diagonal elements of the first
matrix are used to form a single row vector which is output to the
second operand address. Example:

DIAGONAL (SEQ2)(SEQi^).

DIMENSION (mnemonic: DIM)

The DIMENSION operation has two address parameters, an input
address, and an output address. The number of rows and the number
of columns of the input matrix are used to form the first and
second elements respectively of a two element, single row matrix
which is output to the output address. Example:

DIM (SEQ2)(SEQ1).

DOUBLE (mnemonic: DOU)

The DOUBLE operation has anywhere from one to tv:enty-one
addresses as parameters. Listing an address as a parameter negates
the effect of any previous listing of that address as a parameter
in the operation SINGLE. Listing an address as a parameter which
has not appeared as a SINGLE subparameter has no effect. Example:

DOUBLE (SEQl) (SEQ2) (SEQ3) (SEQi+) (SE05) (l)

.

EJECT (mnemonic : EJE
)

The EJECT operation causes the next printout to begin at the
top of a new page. EJECT has no parameters. Example:

EJECT.

E-DIVIDE — Elementwise Divide — (mnemonic: E-D)

The E-DIVIDE operation has from three to twenty-one address
parameters. The last address is the output address; all other
addresses are for input. Each input matrix must have the same
number of rows and columns as all other input matrices for the use
of the operation. A.n address may be used more than once as an

input addre s s

.

Elements of the second matrix through the next to last matrix are

divided into the corresponding elements of the first matrix. Output
goes to the last address. Example:

E-DIVIDE (SEQ1)(SEQ2)(SEQ3).

E-MULTIPLY -- Elementwise Multiply — (mnemonic: E-M)

The E-MULTIPLY operation has from three to twenty-one address
parameters. The last address is the output address; all other
addresses are for input. Each input matrix must have the same
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number of rows and columns as all other input matrices for the use
of the operation. An address may be used more than once as an
input address.

Corresponding elements of the first matrix through the next to
last matrix are multiplied together. Output goes to the last
address. Examples:

E-MULTIPLY (SEQl) (SEQl) (SEQ2).
E-MULTIPLY (SEQ3) (SEQ2) (l) ( SEQU )

.

E-ROOT — Elementvise Square Root — (mnemonic: E-R)

The E-Root operation has two address parameters, an input address
and an output address. The (positive) square root of each element
of the input matrix is taken and the result goes to the output
addr e s s . Exampl e

:

E-ROOT (SEQ1)(SEQ2).

EXPAITO (mnemonic: EXP)

The EXPAND operation takes the first row of the first input matrix
and repeatedly outputs that same row to the output address the nimiber

of times specified by the second parameter.
The second parameter can be either a floating point number in which

case the input row is copied to the output nddress the number of times
specified by the integer portion of the floating number; or the
second parameter can be an input address in which case the input row
is copied to the output address until the output matrix has the
same number of rows as the second input matrix. The third parameter
is the output address. Examples:

EXPAJ}© (SEQ1)(SEQ2)(SEQ3).
EXPAJTO (SEQ,1)*55*(SEQU).

FILE (mnemonic: FIL^

The FILE operation has anytNrhere from one to twenty-one addresses

as parameters. FILE is used to cause an end-of-file mark to be

written at the end of a SEQUENTIAL file. This operation is generally

most useful to the user who wishes to place more than one file on

his own physical tape. Since any meaningful use of the FILE

operation requires the addition of appropriate IBM 360 JCL cards,

all but the most experienced users should see a consultant in the

SOUPAC office before using this operation. Example:

FILE (SEQ5^.

GEIiTERATE (mnemonic: GEN")

The GENERATE operation generates a single row vector with the

floating point numbers the user specifies. The first operand is

the output address. Remaining parameters are as many floating

point numbers as the user wishes. Example:

GENERATE (GEQ2'' "^l.* *2.* *k.* *8.* *l6.'^ *32.*.
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HORIZONTAL AUGMENT (mnemonic: HOR'

The HORIZONTAL AUGMENT operation has from three to twenty-one

address parameters. The last address is the output address; all

other addresses are for input. Each input matrix must have the

same number of rows as all other input matrices for the use of the

operation. An address may be used more than once as an input address.

Input matrices from the first matrix through the next to last

matrix are stacked left to right and the result goes to the last

addre s s . Example

:

HORIZONTAL AUGMENT (SEQlUSEQ>USEQ2Ul) •

IDENTITY (mnemonic: ^t^F^

The IDENTITY operation has two parameters. M identity matrix,

of order specified by a fixed point n\;imber as the first operand, is

output to the address specified by the second operand. Example:

IDENTITY (20)(SEQ3^.

INPUT (mnemonic: INP"^

The INPUT operation will input formatted or non-formatted
records from any available device. This option is primarily for

reading card images or other similar data the user may have

usually on his own tape, which would be awkward to input in the

typical card deck manner.
Never input to I (see SPECIAL COMMENTS^ using the INPUT operation

unless both the number of rows and the number of col^jmns of the

input matrix are specified as parameters on the INPUT operation

parameter card.

The parameters for INPUT are the input address, the output
address, the number of rows of the input matrix (optional in
most cases^, number of columns, and optionally the format enclosed
in quotation m.arks. Examples:

INPUT (SEQ1)(SEQ,2/PRINTH20H5^ "(10F8.3^".
INPUT (SEQ2) (SEQ3^ ( HQ)

.

im'ERT (mnemonic: IW^'

The INVERT operation inverts a non-singular real matrix.
The INVERT operation has five subparameters, the last three of
which are optional. The first parameter is the address of the matrix
to be inverted, and the second parameter is the output address of
the result. (The incore address option described in section III. A -

SPECIAL COMMENTS - may be used for either input, output, or both).
To have the determinant of the original matrix printed out, code a

(l) as the third parameter.
The inversion technique used is the Gauss-Jordan method with

pivot elements assumed to be on the main diagonal. If it is
desired that the inversion technique perform row and column
interchange, for the purpose of picking pivot elements as those with t

the largest absolute value at each step of the elimination procedure.
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code a (l) as the fourth parameter. The defaiilt case, pivot elements

assumed to be on the main diagonal, executes faster than when row

and column interchange is performed. For those real symmetric

matrices which have the property that the largest elements are

necessarily on the main diagonal (e.g. correlation, cross-products,

variance-covariance matrices'^ numerical accuracy of the results is

not significantly different between the two options. For general
matrices in which specific properties are not known, using row and

column interchange will probably produce more accurate results.
The fifth argument is a floating point number enclosed in asterisks

which is to be used as the criterion for singularity. If the absolute
value of any pivot element is less than the criterion for singularity,
the matrix is assumed to be singular. If no value is specified, orn
if *0.* is specified as the fifth parameter, a default value of 10~

is used to test for singularity.
INVERT destroys any previous use of the incore address option.

All calculations are done in double precision.
INYERT also has the ability to solve a set of simiiltaneous linear

equations if a unique solution exists. To solve the system indicated
by the matrix equation

iti

"J

AX = Y

input to the INVERT suboperation a matrix which contains A:Y (i.e.
the constant term appearing as the last column variables). The
resulting output of the INVERT suboperation will be

The Y above may be more than one column vector in which case each

resulting column vector of X will be the solution for the corresponding

column of Y. Examples:

INVERT (SEQ1)(SEQ2).
INVERT (SEQA) (SEQ3) (l) (l)

.

INVERT (SEQ2)(SEQUKi)( ) *10.E-5*.
INVERT (SEQ5)(SEQ1)( ) (l) *. 0000001*.

KROMECKER PRODUCT (mnemonic : KRO

)

The KRONECKER PRODUCT operation forms the Kronecker Product
of two matrices and outputs the results to an output address.
The resulting output matrix is composed of m^ x n submatrices
where m-|_ and n^ are the dimensions of the first input matrix.
Each submatrix has the size mg x n2 where m2 and n2 are the
dimensions of the second input matrix. Note that the output
matrix has the dimensions m2m2 x n]_n2. Each submatrix is the
result of the scalar product a. . B.

For example, if matrix A is oA SI and B is on S2 where

1.

A= -1 B=
1 3

2 k

the result of executing the MTRIX statement

KRONECKER (Sl ) (S2 ) (S3 )

.

would be the following matrix on S3.

mssissm
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1 3 2 6

2 k U 8

•1 -3 1 2

2 -k 3 U

.5 1.5

1 2

LABEL (mnemonic: LAB)

The LABEL operation is used to store a title and column labels at

a SOUPAC address for later use within a MATRIX program. The title

is limited to 128 characters. Labels are limited to eight characters

The first parameter is the address where the title and labels

are to be stored. This is then followed by the title and labels

each enclosed in quotation marks. Only one label set is actxve at

any one time. Hence, each use of LABEL overrides all previous uses.

Labels generated within a MATRIX program may not be passed to other

programs. (note: The incore address option may be used to store a

title and label set if desired.)
, ^ ^

rn,. ,-^,c> a Qpt o-f la"b'='ls "hich have been stored, use [h] after the

-r^-nt ^^rtion of the output matrix to be labelled. For example, the

following statement pair will label the result of a HORIZONTAL AUGMENT

.

LABEL(S5) "SAMPLE DATA""ID'

H0RIZ(S1)(S2)(S3/P(L)).

'AGE""HEIGHT""WEIGHT'

This
S5 is being used as a convenient place to store the labels

presumes that S5 is not being used for anything else and is available.

LAG '(Mnemonic: LAG)

The LAG operation has the following operands; an input address,

an integer specifying the number of lag periods to be added, an

output address, and index sets specifying which variables are to be

lagged

.

For example, suppose we are interested in lagging the fourth

variable of a five variable matrix and suppose that we want three

lag periods. First it should be noted that the resulting output

matrix will necessarily have three fewer rows (observations) than

the input matrix.

If we use

LAG(S1)(3)(S2)(U).

the resulting t^''^ row of the output address would be

X,

t,l ^,2 \,3 ^t,U \-l,U \-2,U -t-3,U t,5
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As a concrete example, if the following input is on SI

1 2 3

k 5 6

1 8 9

10 11 12

13 lU 15

16 17 18

Use of either the statement

LAG(S1)(2)(S2)(2)(3).
LAG(S1)(2)(S2)(2,3).

or

will result in the following matrix being output onto S2.

52967 e

10 11 8

13 1^ 11

2 9

5 12 9

8 15 12

16 17 1^ 11 18 15

LOWER TRIANGLE (mnemonic: LOW;

3

6

9

12

The LOWER TRIANGLE instruction copies a matrix from one
address to another and sets all elements which are above the
main diagonal to zero. It is possible to indicate if it is

desired that the main diagonal elements also be set to zero.
The LOWER TRIANGLE instruction has three operands; an

input address, an output address, and an integer option flag.

If the option flag is omitted or is zero, the main diagonal
elements are included as part of the lower triangle. If the
option flag is non-zero, the main diagonal elements are set to
zero. Examples:

LOWER (SI) (S3).

LOWER (S2) (Sl+)(l).

MAKIMUM (mnemonic: MAK)

The MAXIMUM operation has three operands; an input address, an
output address, and an option indicator.

If option is specified, the resulting output matrix is a single
row vector containing the maximum element of each column of the
input matrix. Specifying no option is equivalent to specifying option
0.

If option 1 is specified, the resulting output matrix is a single
column vector containing the maximum element of each row of the
input matrix.

If the option is specified as any number other than or 1, a

single element matrix is output which contains the maximum element
of the entire matrix. Examples:

MAX (SEQ1)(SEQ3).
MAX (SEQa)(SEQ2)(2).
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MNIMUM (mnemonic: MIN)

The MINIMUM operation has three operands; an input address, an
output address, and an option indicator.

If option is specified, the resulting output matrix is a
single row vector containing the minim-um element of each column
of the input matrix. Specifying no option is equivalent to
specifying option 0.

If option 1 is specified, the resulting output matrix is a
single column vector containing the minimum element of each row
of the input matrix. Examples:

MIN (SEQ1)(SEQ3).
MIN (SEQ1)(SEQ2)(2).

MOVE (mnemonic: MOV)

The MOA/E operation moves (actually copies) a matrix from one
SOUPAC standard input source to another. If reading from SEQUENTIAL,
the MOVE operation assumes that the data set was created using SOUPAC
conventions, i.e. by some SOUPAC program. If the input source is
CARDS, the input deck must be preceded by a correct DATA format
statement and terminated by an ENDi^ card.

Never MOVE .from CARDS to T (see SPECIAL COMMENTS) \anless both
number of rows and number of colimns of the input matrix are
specified at the front of the data deck.

The operation has between two and twenty-one addresses as
parameters. The first address is the input address. All remaining
addresses are output addresses. Examples:

MOVE (CARDS) (SEQ1)(SEQ2).
MOVE (cards) (SEQl).

r^LTIPLY (mnemonic: MUL)

The MULTIPLY operation has three addresses for parameters. A
matrix multiplication is performed between the matrices on the first
two addresses and the result is stored in the third address. The
MULTIPLY operation permits use of the same address to be used as an

input address for both first and second operands. This usage is

equivalent to using the SQUARE suboperation.
The incore address option may not be used for input of the first

operand if the first operand is different from the second. The
incore address option may never be used for output of the result.

The WLTIPLY operation destroys any matrix which has been stored
in core using the incore address option (see section III. A - SPECIAL
COMMENTS"^. All calculations are done in double precision. Examples

MULTIPLY (SEQl^ (SEQ2) (SEQ3)

.

MULTIPLY (SEQl) (SEQl) (SEQ2)

.

MULTIPLY (SEQ2)(lHSEQ5).
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OUTPUT (mnemonic: OUT)

The OUTPUT operation outputs a matrix, a row at a time with or

without format control, to a user specified data set. If format
control is used, the output address specified should not be used
anywhere else in the current SOUPAC job step except with options
which also perform formatted l/O (e.g. the INPUT and OUTPUT operations
of MATRIX"!. The syntax of OUTPUT is two addresses, input and
output addresses respectively, optionally followed by the desired
format enclosed by quotation marks. Examples:

OUTPUT (SEQ1)(SEQ5) "(2OEI5.7V'.
OUTPUT (SEQ2)(SEQ3K

PARTITION (mnemonic: PAR)

The PARTITION operation is used to select a sub-matrix of an
original input matrix. The first operand is the input address
and the second operand is the output address. The next four
parameters specify in order, the beginning coliimn of the partition,
the ending column of the partition, the beginning row of the partition,
and the ending row of the partition. If either beginning parameter is
left out, the partition begins with the first row (or column). If
either ending parameter is left, the partition ends with the last
row (coliMn) . Examples:

PARTITION (SEQ5)(SEQ2)(5)(6)(2)(50)
PARTITION (SEQU)(SEQ2)(3)(^0).

PERMUTATION (mnemonic: PER)

The PERMUTATION operation permutes, on option, rows or col\mins
or rows and columns of an input matrix. The resulting matrix is
output to the second operand output address.

The third operand is an option flag. If the option flag is
specified as zero, columns of the matrix are permuted. If the option
flag is specified as one, rows of the matrix are permuted. If the
option flag is specified as other than zero or one, both rows and
columns are permuted.

The order of columns or rows of the output matrix is determined
by index sets. Examples:

If the statem.ent

PERMUTE (Sl)(S2)(0)(5)(l,U).

is used and 31 has the matrix'

1. 2. 3. h. 5.
-1. 0. 2. .1 .3

the resulting output matrix will be

5. 1. 2. 3. h.

.3 -1. 0. 2. 1.
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If the input matrix had "been

1.

-1.
2.

0.

3.

2. .1

5. 6,

.3 k.

the resulting output matrix would be the same as the output matrix already-

listed. Note that this implies that only those columns or rows which are
explicitly listed will he output.

If the statement

PER (S1)(S2)(1)(3)(2)(1).

is used and the matrix on SI is

2 3

5 6

8 9

the resulting output matrix will be

3 2 1

6 5 1+

9 8 7

If the statement

PER (S1)(S2)(2)(3)(2)(1)

is used on the matrix

the resulting output matrix; will be

Warning : When permuting rows alone or rows and columns, it may be necessary
to include a prolog card #DEFIWE for DU9 with appropriate parameters. In
addition, space on FT99F001 should be checked. See a SOUPAC consultant for
assistance whenever permuting rows.

PRINT (mnemonic: PRI)

The PRINT operation prints out a matrix, one row at a time, under the
control of a user supplied format. Fo2:Tnats follow FORTRAN IV conventions
with the added restriction that formats are limited to 592 characters.

The first parameter is the address of the matrix to be printed. The
second parameter is the format enclosed in quotation marks. (Warning: Allow
for carriage control as the first character in output lines. A print line has

133 characters.) Example:

PRINT (S2) "(
' ' ,3F20.10)"
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PITOCH (mnemonic: PUN)

The PUNCH operation has the same syntax as PRINT and is used to punch

out a matrix under the control of a user supplied format. (Warning: When

punching cards, remember that there is room for only 80 characters per card).

The PUNCH operation always punches two cards in addition to the actual

data deck. At the front of the data is punched a DATA format card, and at

the end of the data is punched an END# card. Example:

PUNCH (S1)"(8F10.2)".

RECIPROCAL (mnemonic: REC

)

The RECIPROCAL operation has two operands, an input address and an output
address. The reciprocal of the elements from the first matrix are used to
form an output matrix which is output to the second operand address. Example;

RECIPROCAL (si) (S3).

REMAP (mnemonic : REM)

The REMAP instruction is used to change single rows of input into several
rows of output or to change several rows of input into single rows of output.
The REMAP instruction has three operands; an input address, an output address,
and an integer which is to be used as the column dimension of the output
address

.

Case 1: Map single rows of input into several rows of output. In this
case the column dimension of the output address is less than and must divide,
the column dimension of the input address matrix. For example, if we have on
SI the data matrix

1. 2. 3. h. 5.

and use the instruction

REMAP(S1)(S2)(2).

the resulting output to S2 would be

6.

Notice that using the instruction

REMAP(S1)(S2)(U).

would be an error since h, the column dimension of the output matrix does not
divide 6, the coliimn dimension of the input matrix.

Case 2: Map several rows of input into a single row of output. In this
case, the column dimension of the output matrix must be a multiple of the
column dimension of the input matrix. Furthermore, if the multiple is some
value m, m must divide the number of rows of the input matrix. For example,
if we have on S3 the data matrix:
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1. 2.

3. h.

5. 6.

and use the instruction

REMAP(S3)(SU)(6).

the resulting output matrix on SU would be

1. 2. 3. h. 5. 6.

Notice that the number of columns of the output matrix is three times larger
than the column dimension of the input matrix. Notice also that three divides
the number of rows of the input matrix.

REWIND (mnemonic: REW)

The REWIND operation has anywhere from one to twenty-one addresses as

parameters. REWIND is used to rewind a sequential file. The REWIND operation
needs only to be used with the INPUT operation when it is desired to reread
a formatted input file. Example (to input the same formatted file from S3

onto both SI and S2 under control of different formats):

INPUT (S3)(S1)( )(5) "(10X,5F10.0)".
REWIND (S3).

INPUT (S3)(S2)( )(8) "(8F10.0)".

ROW DELETE (mnemonic: ROW)

The ROW DELETE operation specifies which rows of an input matrix are to
be deleted before sending the result to the output address. The first
parameter is the input address. The second parameter is the output address.
Rows to be deleted are specified by index sets following the output address.
Example:

ROW DELETE ( I ) (S3 ) (l ) (3 ) (7 ) (8) (ll) (U5 )

.

RECIPROCAL OF SQUARE ROOT OF DIAGONAL (mnemonic: RSD)

The RSD operation has two operands, an input address and an output
address. The reciprocal of the square root of the main diagonal elements
from the first matrix are used to form a single row vector which is output
to the second operand address. Example:

RSD (SI) (S3).

SCALAR : (mnemonic : SCA )

The SCALAR operation has three parameters. A floating point number
specified by the second operand is multiplied by every element of the matrix
specified by the first operand. The result goes to the third operand address.

The second operand may be either a floating point number enclosed in
asterisks, or a standard SOUPAC input address. If an address is specified,
the first element of the matrix at the address is used for the floating point
number. Example:

(
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SCALAR(Sl) *2.* (S2).

SCALAR(Sl4)(S3)(S2).

SINGLE (mnemonic: SIN)

The SINGLE operation has anywhere from one to twenty-one addresses as

parameters. Listing an address as a parameter causes any matrices written
on that address to "be written in single precision. MATRIX stores all data
matrices in double precision unless the user specifies otherwise with the
suboperation SINGLE. The listing of an address in a SINGLE statement in
one MATRIX program does not carry over in effect to any other MATRIX Program,

SINGLE (Sl)(S2)(Sl|).

SUBTRACT (mnemonic: SUB)

The SUBTRACT operation has from three to twenty-one address

parameters. The last address is the output address; all other addresses

are for input. Each input matrix must have the same number of rows

and columns as all other input matrices for the use of the operation.

Elements of the second matrix through the next to last matrix are

subtracted from corresponding elements of the first matrix. Output

goes to the last address. An address may be used more than once as

an input address. Examples:

SUBTRACT (SEQl) (SEQ3) (SEQ/0 .

SUBTRACT (SEQU) (SEQ2) (SEQ3) (SEQI) (SEQ5) .

SUM (mnemonic: SUM)

The SUM operation has three operands; an input address, an output

address, and an option indicator.

If option is specified, the resulting output matrix is a single

row vector containing the column sum of each column of the input matrix.

Specifying no option is equivalent to specifying option 0.

If option 1 is specified, the resulting output matrix is a single

column vector containing the row sum of each row of the input matrix.

If the option is specified as any number other than or 1 ,
a

single element matrix is output which contains the sum of all elements

over the entire matrix. Examples:

SUM (SEQ1)(SEQ3).
SUM (SEQ1)(SEQ2)(2).

TRANSPOSE (mnemonic: TRA)

The TRANSPOSE operation transposes a matrix (interchanges rows
and columns). TRANSPOSE destroys any previous usage of the incore
address storage. The two parameters for TRANSPOSE are first the
input address and second the output address of the result. Example:

TRANSPOSE (SEQ^)(SEQ2).
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UPPER TRIMGLE (mnemonic: UPP)

The UPPER TRIANGI^ instruction copies a matrix from one
address to another and sets all elements which are below the
main diagonal to zero. It is possible to indicate if it is
desired that the main diagonal elements also be set to zero.

The UPPER TRIANGLE instruction has three operands; an input
address,, an output address, and an integer option flag. If the
option flag is omitted or is zero, the main diagonal elements
are included as part of the upper triangle. If the option flag
is non-zero, the main diagonal elements are set to zero. Examples

UPPER (SI) (S3).

UPPER (S2)(si+)(1).

VECTOR (mnemonic: VEC)

The \rECTOR operation has two operands, an input address and an
output address. A single vector from the first location is used
to form a diagonal matrix which is output to the second address.

If the input matrix has more rows than columns, the first column
vector is used to form the diagonal matrix. If the input matrix
has more columns than rows, the first row is used to form the

diagonal matrix. Example:

VECTOR (SEQ1)(SEQ3).

VERTICAL AUGMENT (mnemonic: VER)

The VERTICAL AUGMENT operation has from three to twenty-one
address parameters. The last address is the output address; all
other addresses are for input. Each input matrix must have the
same number of columns as all other input matrices for the use of
the operation. An address may be used more than once as an input
addre s s

.

Input matrices from the first address through the next to the last
address are stacked top to bottom and the result goes to the last
address. All input matrices must have the same niomber of columns.
Example

:

VERTICAL AUGIvENT (SEQl) (SEQ2) (SEQ3) •

i
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III. Special Comments

A. Incore Address Option

Besides the standard SOUPAC addresses, MATRIX also recognizes
the additional address I. The I symbol as an address represents
internal storage in the machine.

An obvious use of this feature is to cut down on l/O time for
matrices which are to be used in future operations within the
current matrix program. The internal storage feature also saves'

time when the user desires his output from an operation to be
printed or punched. The user must keep in mind that data cannot
be passed to subsequent programs with the I storage. The user
should also be aware of the restrictions on I storage as mentioned
above in some of the subparameter operations (see INVERT, MULTIPLY,
SQUARE, and TRANSPOSE). In all cases the use of this option is not
recommended for matrices which do not fit within the memory available
to the MATRIX program while running within any particular region size

1) To add the matrix on SEQl to the matrix on SEQ2 leaving
the result in core and also printing the result, code as
follows

:

ADD (SEQl)(SEQ2)(l/PRINT).

2) To vertically augment the matrices in core, on SEQl and on
SEQ2, storing the result on SEQU, code as follows:

A/ERTICAL AUGMENT (l) (SEQl) (SEQ2) (SEQi+)

.

B. Labeled Output

Provided in the MATRIX program is the facility to title and put

column labels on any matrix which is printed using normal SOUPAC

print conventions. The labeling feature is not allowed with the

PRINT matrix operation.

To use the labeling feature, it is first necessary to put the

title and labels in a temporary storage area. This is accomplished

with the LABEL operation (see Subparameters)

.

To use a label which has been placed in a temporary storage area,

code (l) after the print portion of the output address. If F

format is also desired code either (F, L) or (L,F) after the print.

Example s

:

1) To move (copy) the matrix on SEQl onto SEQ5 printing the

result in F format with title and column labels, code as

follows

:

MOVE ( SEQl ) (SEQ5/PRINT (F, L ) )

.
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2) To add the matrices on SEQl and SEQ2 storing the result on
SEQ3 and also printing the result with title and column
labels, code as follows:

ADD (SEQ1)(SEQ2)(SEQ3/PRIM'(l)).

3) To transpose the matrix stored on SEQl to SEQ2, printing
out the result in F format with title and column labels,

and punching out a card deck of the transposed matrix,

code as follows

:

TRANSPOSE (SEQ1)(SEQ2/PRINT(L,F)/X).



TRANSFORMATIONS

I. Purpose

TRANSFORMATIONS is a data manipulations program. Unlike MATRIX, which
performs operations on a complete matrix, TRANSFORMATIONS operates upon
matrices one row at a time. This strategy provides almost unlimited flexi-
bility in transforming your data. Some of the general uses include creating
new variables as functions of present variables, recoding or collapsing data,
and reordering or eliminating variables. More advanced uses are facilitated
by an instruction set which allows testing and branching depending on single
variable characteristics or relations between variables, indirect addressing
(FLAG-NOTATION), and inputting and outputting to and from different sequential
units during the program.

TRANSFORMATIONS serves several purposes in the SOUPAC system. First, it

can be used as a stand alone program to perform computations on your input

data and yield the final results. Also, it can be used to prepare your data

for input into another SOUPAC program or to make modifications from the out-
put of one program for input into another

.

II. Description

The TRANSFORMATIONS program reads in one row of data and executes the pro-
gram until the end program card or last card instruction appears. It continues
to read in data one row at a time, while executing the same program for each
successive row until all the rows of data have been processed.

There are 2000 variables allowed in the TRANSFORMATIONS program. Before
each row of data is read into the program, variables 1 through 1000 are set

to zero. Variables 1001 through 2000 are set to zero only before the initial
row of data has been read. Normally, manipulations performed on successive
rows of data are independent from each other, but when values are moved to

variables over 1000, information can be passed from one row to another or

maintained during the processing of the whole matrix. This feature provides
for accumulating sums or other totals as well as the capability of having
information from previous rows of data determine the kinds or extent of manip-
ulations to be performed on the current row.

Input to the program can be specified by the parameter on the TRANS-
FORMATIONS card or by the INPUT instruction. Output can only be achieved by
use of the OUTPUT instruction.

Ill . Parameters

The one parameter on the TRANSFORMATIONS card is the input address of the
main input matrix. This can be either CARDS or SEQUENTIAL 1-15- This card
is followed by the subparameter cards describing the transformations to be
performed. The last card must always be an END PROGRAM card.

TRA(C).
ADD(l)(2)(3).
DIV(1)(3)(U).
OUT(P) (1,U).

ENDP

The main input matrix is from
cards and the output is printed.

TRA(S3).
L0G(3)(T).
SQU(U)(8).
OUT (SU)(T,8).
ENDP

The main input matrix is from SEQ 3

and the output goes to SEQ k .
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IV. Subparameter List

mnemonic notes operation name examples

ABO

ABS

ADD

ANG

A-C

A-S

A-T

C-G

COM

CON

COS

DIF

DIV

EBC

EXC

EXI

EXP

FAC

FIX

FL0

GO

IF

INPUT

LAS

ELO

LOG

MAX

MIN

abort

1 absolute value

1,2 addition

1 angle to radians

l,k arccosine

,4 arcsme

1 arctangent

computed go to

1 combine

3 constant

1 cosine

2 difference if

1,2,U division

1 EBCDIC

1 exchange

exit

1 exponent base e

1 factorial

1 fixed point conversion

1 floating point conversion

go to

arithmetic if

input from unit

last card operation

1,U log base e

l,i+ log base 10

1,2 maximum value

1,2 minimiom value

ABORT

.

ABS :i)(5i).

ADD
ADD

:i)(2)(52).
;i)(7)(ll)*8M53).

ANG :3)(5M.

A-C
A-C

;m(55).
;5)(56)*0*"BAD".

A-S
A-S

;6)(5T).

:t)(58)(8)"*+1".

A-T :9)(59).

C-G ;iO)"A""B""C""D".

COM ;ii)*io*(i2)(6o).

CON
CON
CON

;ioi)*u.3*.

:io2)(T).
;i03,llU)(230,235)*0,5*.

COS :i3)(6i).

DIF
DIF

;i)(5)"X""Y""Z".
;6)*9*"N""z""p".

DIV
DIV
DIV

;iU)*io*(62).
:i5)(6)(63)*0*.
:i5)(6)(63)*0*"R".

EBC :i6)(6U).

EXC :6)(8).

EXIT

EXP '1T)(65).

FAC (:i8)(66).

FIX ( 19)(6T).

FLO ( 20)(68).

GOTO "PLACE"

.

IF(1 ) "*+l""EX""*+l".

INP (

INP (

INP

S2)(200).
S3) (301) "EOF".
'Si+)(U10)"END"(1T)"(17FU 0)"

LAST

ELO (

ELO (

2l)(69).
21)(69)*0*"NEG".

LOG (

LOG (

22)(70).

22)(T0)*0*.

MAX ( 2)(U)(T)*10*(9)(T1).

MIN ( 1)(3)(5)(T2).
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rinemonic notes Qperatlon name examples

MOD 1,2 modular arithmetic MOD '23)*i+*(T3).

MOV I move MOV 2M(TM.

MUL 1,2 multiplication MUL <

MUL
1)(25)(26)(T5).
'2T)*3*(T6).

NO no operation NOOP

OUT 3 output to unit OUT (

OUT
'P(F))(1,30).
S3)(l,5)(8)(51,85).

PER 3 permute PER (

PER (

T01)(6,10)(51,85)(2).
80l)*l,l+*(6)*l,4*(T).

RAD 1 radians to angle RAD ( 28)(TT).

REC 1,2 recode REC
REC (

29)"GT"(30)(t8)*11*.
31)"EQ"(32)(T9)*0*(T9)*1*.

riG 1 sign transfer SIG (:33)(3M.

SIN 1 sine SIN :35)(80).

SKI 2 skip record on unit SKI
SKI

;S2)(100).
;s3)*i*.

SQU l,i^ square root SQU
SQU

:36)(8l).

;3T)(82)*-1*"IM".

SUB 1.2 subtraction SUB
SUB

;38)(39)(83).
;uo)*2«(8U).

SUM

SUP

WAR

XAD

XDI

XIF

XI-IU

X3M

XSU

1 siainmation

suppress warnings

warnings on

5 fixed point addition

5 fixed point division

5 fixed point arithmetic if

5 fixed point multiplication

5 fixed point summation

5 fixed point subtraction

SUM (1)(10)(85).

SUP.

WARN.

XADD(Ui)(U2)(U9).

XDIV(Ul)(U2)(l48).

XIF (U6)"P""0""T'V

xmul(Ui)(U2)(Ut).

XSM {k6)ih9){k3).

XSUB(i+l)(li2)(U6).

NOTES

The following features are available to an instruction if and only if

the number appears in the notes for that instruction:
1. DO-notation may be used with variables and floating point constants
2. Floating point constants may be substituted for input variables.
3. Variable ranges may be specified instead of single variables.
h. Substitute output values and transfer labels may be used to avoid

program termination in the case of undefined output values.
5. The input variables must be in fixed point representation.
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V. Transformations Labels

In TRANSFORMATIONS there are several instructions which perform some
kind of test on your data. In most cases, the results of that test cause
the program not to execute the next sequential instruction, hut to branch
to some other statement in the TRANSFORMATIONS program and continue
executing with that statement . In order to refer to these statements we
wish to transfer to, TRANSFORMATIONS' labels are employed.

The form of these labels can be illustrated by the following example
which skips over the divide statement if the divisor is zero.

"NEXT"
"JUMP"

IF(3)"NEXT" "JUMP" "NEXT"
DIV (2)(3)(M.
next statement

or

jF(3) "*+i" "*+2" "*+l".
DIV (2)(3)(M.
next statement

The preceding equivalent examples exhibit the two types of TRANSFORMATIONS
labels. The syntactical rules which govern the two types of labels follow.

Type 1

A. A type 1 label consists of eight or less alphanumeric characters
set off by a pair of quotes.

B. Alphanumeric characters consist of the alphabet from A to Z and
the numeric digits from to 9-

C. Any unique label may appear as an operand or branch address of any
number of TRANSFORMATIONS subparameter instructions.

D. Any label which appears as an operand or branch address of an in-

struction must appear immediately preceding and be part of at

least one and only one TRANSFORMATIONS subparameter instruction
in the present TRANSFORMATIONS program.

Type 2

A. A type 2 label consists of a positional reference of the form
*+n set off by a pair of quotes.

B. The symbol * is pointing to the statement in which it appears.
Therefore, *+l would point to the next statement, *+2 would skip

one statement, and *-l would point to the preceding statement.
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C. This type of label need only appear as an operand or branch address
and not before the TRANSFORMATIONS subparameter instruction which
it is referencing,

D. Since the statement to which you are going to branch is always

indicated relative to the statement from which you are branching,
it is possible to point to an address which would lie beyond the
end of the program or before the beginning of the program. Need-
less to say, this would result in an error condition.

E. Branching to "*+0" would create an infinite loop and is also illegal

Example

If you had a sample with l8 variables and you wanted to eliminate all
observations with missing data, you could execute either of the following
equivalent programs

:

TRA(C).
REC (1,18) "EQ"*-0.*(99)*1*
IF (99) "BAD" "ZERO" "MIS".

"BAD" ABORT.
"ZERO" OUTPUT (SI) (l,l8).
"MISS" NOOP.

ENDPROGRAM

TRA(C)

.

REC(l,l8) "EQ"*-0.*(99)*1*.
IF (99) "*+i" "*+2" "*+3".

ABORT

.

OUTPUT (SI) (l,l8).
NOOP.
END PROGRAM

The sample is input from cards. The second instruction scans variables
1 through l8 and recodes variable 99 to a 1 if any missing data is found.
In this case, we assume that missing data on the data cards has been coded
as blanks w];aich are read into the program as minus zeroes. The IF instruc-
tion branches to one of the three labels depending if the value of variable
99 is negative, zero, or positive. In this way, if missing data was found,
variable 99 will be a 1 instead of a zero and the branch will skip over the
OUTPUT instruction causing the observation with missing data to be deleted.
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VI. Subparameter Description

ABO

The ABORT instruction causes immediate termination of the TRANSFORMATIO
program and the entire SOUPAC program. This instruction is often
transferred to when internal tests reveal incorrect data. Example:

ABORT.

ABS

The ABSOLUTE VALUE instruction takes the absolute value of the first
variable and stores it into the second variable. Example:

ABS (3) (25).

ADD

The ADD instruction has from three to one hundred parameters
pointing to variables. The first variable through the next to last
variable are summed and the result is stored into the last variable,
Example s

:

ADD (6) (7) (23).

ADD (1)(3U5)(7)*3T.1^*(100).

ANG

I

The ANGLE TO RADIANS instruction converts the first variable, which
should be a measure of an angle, into radians and stores the result
into the second variable. Example:

MG (5)(17)

A-C

The ARCCOSINE instruction takes the arccosine of the first variable

and stores it into the second variable. The first vairable must be

between minus one and one inclusive. The result will be stored in radii

Example

:

A-C (7)(3U)

A-S

The ARCSINE instruction takes the arcsine of the first variable and
stores it into the second variable. The first variable must be

between minus one and one inclusive. The result will be stored in

radians . Example

:

A-S (9)(13).
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A-T

The ARCTANGENT instruction takes the arctangent of the first
variable and stores it into the second variable. The result will be

stored in radians. Example:

A-T (8) (70).

C-G

The COMPUTED GO TO has from two to twenty two parameters. The
first parameter contains a variable and the following parameters contain
labels. The basic form is

C-G(v)"L^" "L^" "L3"
n

where n < 21

The variable must be floating point. If it is not of integral value
then it is truncated^, (all digits to the right of the decimal point are

dropped"! . The instruction will then branch to the label whose position
in the list is equal to the integral value of the variable. Example:

Ilpit "t-v" "E'VC-G(7)"A" "B"

If variable 7 is equal to k,0 or k,3 then the instruction will branch
If variable 7 is less than 1, then the program will ter-

If it is over 5 the next instruction will be executed.
to label "D"
minate

.

CON

The CONSTANT instruction contains from two to one hundred parameters.
The instruction is used to assign constant values to variables. The
first parameter indicates either a variable or range of variables.
Tlie subsequent parameters contain the fixed point constant (s) and/or
the floating point constant(s) which are assigned to the variable(s).
Example s

:

C0N(7)(99) assigns fixed point value 99 to variable "J,

CON (8)*^. 3* assigns floating point value k.3 to variable 8,

C0N(7>8) (99)*^»3* is equivalent to the previous two together.

The more complicated structures which contain ranges and increments for
the variables and constants, uses DO-notation which is explained in Sec. 9.

An example of the CONSTANT instruction with that structure will be included
in that section.

COS

The COSINE instruction takes the cosine of the first variable and
stores it into the second. The first variable must be expressed in
radians. Example:

COS (1)(17).



II.TRA.8

DIF

The DIFFERENCE IF instruction contains five parameters. The first
two parameters point to variables said the next three contain labels.
The second variable is subtracted from the first. If the difference is

negative the instruction branches to the first label, if the difference
is zero it branches to the second or middle label, and if the difference
is positive it branches to the third or last label. Example:

DIF (3) (5) "A" "B" "C'

If variable 3 minus variable 5 is negative the instruction will branch
to label "A",

DIV

The DIVIDE instruction contains from three to five parameters. In the

case of three parameters, the first variable is divided by the second varial

and the resiilt is stored in the third variable. A division by zero will
terminate the program. Example:

DIV (1^2^30^.

In the case of four parameters, the division will take place as normal exce.

when the second variable is zero. In that event, the fourth variable will

be_ stored into the third variable as a supplied quotient. Example

=

DIV (lU2K30U31^ .

If the fifth parameter is added, it indicates a label to be branched to

in the event of a division by zero. The branch will take place after
the supplied quotient is stored into the third variable. Example:

DIV (1) (2^30) (31) "ZERO".

EEC

The EBCDIC instruction converts characters, which are read into the
program by means of an Al format field, into floating point numbers.
The first variable contains the character. The result after the
table look up will be stored into the second variable. Example:

EEC (6U89^.

The table used for the conversions is located following the
subparameter descriptions. This instruction is often used to prepare
character codes for input to a SOUPAC FREQUENCY program.

EXC

The EXCHANGE instruction exchanges the contents of two variables.
Example

:

EXC (l)(2^.

EXI

The EXIT instruction causes immediate termination of the TRANSFORMATION.'

program, but will continue to execute the SOUPAC program which follows-

Example

:

EXIT.
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EXP

The EXPONENT BASE e instruction raises e to the power of the first

variable and stores the result in the second variable. Example:

EXP (3l)(T0i+)

FAC

The FACTORIAL instruction calculates the factorial of the first

variable ani the result is stored in the second variable. Example:

FAC(8T)(120).

FIX

The FIXED POINT CONVERSION instruction converts the floating point

variable and the result is stored in the second variable. Example:

FIX (2)(9)

FLO

The FLOATING POINT CONVERSION instruction converts the fixed point

yariable indicated by the first parameter and stores the result into the

second variable. Example:

FLOAT (7) (8).

GO

The GO TO instruction unconditionally branches to the label indicated
by the only parameter. Example:

GO TO "LABEL".

IF

The IF statement has four parameters. The first parameter contains a

variable and the remaining three parameters are labels. If the variable
is negative, zero, or positive the instruction will branch to the first,
second, or third label respectively. Example:

IF (33) "L1""L2""L3".

If variable 33 is positive the instruction will branch to label "L3".

INP

By use of the input instruction you can read in rows of data from sources
other than the main input matrix. The first parameter indicates which unit
the data will be input from. The second parameter indicates the starting
variable number where the row is to be placed. Examples:

INPUT (S3) (500).

The program branches to the label
"EOF" if an end of file occurs.

INPUT (Si4)( 601 )"E0F".

INPUT(S5)(T01)"B"(12)"(12FU.1)" This form is for formatted input
The fourth parameter is the number of vari-
ables and the fifth parameter is a standard
FORTRAN format.
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If S3 contains 6h variables then this input instruction will read the
next row from S3 and store it in variables 500 through 563* Be careful
to avoid overwriting of existing variables which you need and also of
trying to read more or less rows than exist on a particular imit.

LAS

The LAST CARD instruction allows instructions to be performed after

the last row of data has been read in and processed. The LAST instruction

divides a program into regular and last card segments. The regular

section, as is a TRANSFORMATIONS program without the LAST option, is

executed once for every row of data. After all the main input data

is processed the last card segment is executed once. One of the main

uses of the LAST instruction is to analyze data accumulated in variables

1001-2000 during the regular segment. Example:

LAST.

Only one LAST instruction may be used for TRANSFORMATIONS programs and
branching between regular and last card segments is prohibited.

ELO

The LOG BASE e instruction takes the natural log of the first variable
and stores it in the second variable. Example:

ELOG (3Hl7)-

LOG

The LOG BASE 10 instruction takes the base 10 log of the first
variable and stores it into the second variable. Example:

LOG (l8)(3i+).

MAX

The MAXIMUM VALUE instruction has from three to one hundred parameters
pointing to variables. The variable with the largest value from the
first variable to the next to last variable is stored into the last
variable. Examples:

MAX (1)(2)(7).
MAX (1) (7) (8) (11) (15).

MIN

The MINIMUM VALUE instruction has from three to one hundred parameters
pointing to variables. The variable with the smallest value from the
first variable to the next to last variable is stored into the last
variable . Example s

:

MIN (11) (13) (291.

REN (1)(3U^U7K8K10)(12).
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MOD

The MODUMR ARIlliMETIC instruction finds the value of the first

variable modulxig the second variable and stores the result into the

third variable. Example:

MOD {l){h)(7).

MOV

The MOVE instruction stores a copy of the first variable into the

second variable. If a value already exists in the second variable it

will be ovenfritten. Example:

MOVE (3U9)

MUL

The MULTIPLY instruction has from three to one hundred parameters
pointing to variables. The first variable through the next to last

variable are m-ultiplied together and the result is stored in the
last variable. Examples:

MUL (l)(2U20^.
MUL (3H^K5)(6Uio).

NO

The NOOP instruction does nothing. Its primary use is when it is

preceded by a label and used as a placeholder in the TRANSFORMATIONS
subprogram to which many different instructions branch. It is

commonly used at the end of a TRANSFORMATIONS subprogram where
several isolated groups of instructions all wish to branch to the

end. Example

:

"END" NOOP.

OUT

The OUTPUT TO UNIT instruction is the only way the TRANSFORMATIONS
program can output a row of data. There are two or more parameters. The
first indicates the unit to which the row of variables shoiold be output.
The other parameters can be either single variables or ranges of
variables. Examples:

OUT (S2)(T).

This will output onto 82 a row with one variable.

OUT (SU)(8,11+). or OUT (SU ) (8 ) ( 9,11 ) (l2 ,1^ ) •

This will output onto SU a row with seven variables, variable eight
through variable fourteen. All outputs to the same unit must have the
same number of variables output. A more detailed description of types
of ranges which are allowed will appear in Sec. 9 on DO notation-
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PER

The PERMUTE instruction permutes the order of all or a subset of
your variables. It can have from two to one hundred parameters, all
indicating variable niunbers. The first parameter indicates a starting
point of where a string of variables should be placed. The rest of the
parameters compose that string of variables. Each of the parameters
in that string represent either a single variable or a range of variables,
Examples

:

PER (lOO)(3)(lO,li+)(^,5).

This example places variable 3 in variable 100, variables 10 through lU
in variables 101 through 105, and variables U and 5 in variables
106 and 107. A more detailed description of types of ranges which
are allowed will appear in Sec. 9 on DO notation ranges.

PER (2)(1,1999).

This example will not propagate variable 1 through all the variables.
It will perform the intended purpose of raising all variable numbers
up one

.

RAD

The RADIANS TO ANGLE instruction converts the first variable, which
should be a measure of radians, into an angle and stores the result into
the second variable. Exeunple :

RAD (9)(13)

RAI

The RAISE instruction raises the first variable to the power contained in if

second variable and stores the result into the third variable.
Example

:

RAISE (1)(2)(7).

REG

The RECODE instruction recodes variables depending on the satisfaction
of a set of conditions. The sequence of pareimeters depends on the
number of conditions that must be met. The RECODE instruction
introduces a new set of terminology which follows:

A. RELATIONAL OPERATORS
"LT" less than
"LE" less than or equal to
"EQ" equal

"ne" not equal
"GE" greater than or equal
"GT" greater than

CONNECTIVES
"AND"
"OR"
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C. CONDITION SET

A condition set consists of three parameters, the first and
third parameters pointing to variables and the second
parameter containing a relational operator. Any condition set is

either true or false depending upon whether the two variables
satisfy the conditions of the relational operator.

D. RECODE SET

A recode set consists of two parameters. The first parameter
indicates a variable. The second parameter indicates a variable
or a floating point constant. If a recode set is executed
the value of the second variable or floating point constant
is stored into the first variable.

The RECODE instruction consists of from one to twenty one condition
sets joined together in the case of more than one by connectives . This is

followed by a recode set to be executed if the logical product of the condi-

tion sets is true and optionally a second recode set to be executed
if the logical product is false. Examples:

REC (U) "EQ" *3* {h) *1* {h) *0*.

If variable h equals 3.0 then recode it to 1.0, if not then recode it

to Q,0.

REC (6) "GE" (10) "AND" (?) "LE" (20) (llO) (ill)

If variable 6 is greater than or equal to variable 10 and variable 7 is

less than or equal to variable 20 then recode variable 110 to the
value of variable lH .

BIG

The SIGN instruction places the sign of the first variable on
the second variable. It is often used for saving signs of variables
during intermediate calculations. Example:

SIGN (l)(90l)

SIN

The SINE instruction takes the sine of the first variable and stores
it into the second variable. Example:

5IN (1)(11)
SKI

The SKIP instruction has two parameters. The first parameter is a

sequential unit. The second is a variable or floating point number.
The number in the variable or the floating point number indicate the
number of rows to be skipped o n the specified unit. Example:

SKIP (S2)(7)
SKIP (S5) *1*.
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SOU

The SQUARE ROOT instruction takes the sq_uare root of the first variable
and stores it into the second variable. Example:

SQU (I3)(li+).

SUB

The SUBTRACT instruction subtracts the second variable from the first
variable and stores the result into the third variable. Example:

SUB (T)(9)(10).

SUM

The SUM instruction sums a string of consecutive variables starting vith
the variable indicated by the first parameter and ending with the variable
indicated by the second parameter and places this sum into the variable point-

ed to by the third parameter.

COM

The COMBINE instruction has four parameters. They must be a variable, a

floating point constant, and two variables in that order. The first variable
is multiplied by the floating point constant and the variable in the third
parameter is added to the product. The result is placed in the variable
pointed to by the fourth parameter.

SUP

The SUPPRESS instruction stops the printing of all warning messages.

WAR

The WARNING instruction causes all warning messages to be printed. This
is the normal condition unless a SUPPRESS instruction is used.

XAD - fixed point addition

XDI - fixed point divide

XIF - fixed point if

XMU - fixed point multiply

XSM - fixed point sum

XSU - fixed point subtract

XAD (1)(2)(20).

XDI (3)(U)(21).

XIF (5)"T""0""P".

XMU (6)(T)(22).

XSM (8)(15)(23).

XSU (16)(1T)(2U).

The preceding fixed point instructions have the same parameters as the
corresponding floating point instructions, except that the arithmetic in-
structions are restricted to two input variables and division by zero in the
XDIVIDE instruction will terminate the program. The variables used in the
fixed point instructions must be in fixed point representation rather than
the normal floating point representation.

ZAP

The ZAP instruction zeros out variables 1001 through 2000.
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VIT. EBCDIC Conversion Table

Character Floating Point Niomber Character Floating Point Nimber

blank -0. Ih.
0.

, 75.
1 1. < 76.
2 2.

( 77.

3 3. + 78.
1+ h. 79.

5 5. & 80.

6 6.
I 90.

7 1. $ 91.

8 8. it 92.

9 9.
) 93.

A 10.
5 9h.

B 11. -r 95.
C 12. 96.

D 13. / 97.
E lU.

» 107.
F 15. ^ 108.
G 16. 109
H IT. > 110.
I 18. 9 111.
J 19. * 122.
K 20.

ff 123.
L 21. & 12U.
M 22. 1 125.
N 23. = 126.

2U. tr

127.
P 25.

Q 26.

R 27.

S 28.

T 29.

U 30.

V 31.

w 32.

X 33.

Y 3U.

Z 35.
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VIII. DO-Notation

DO-notation is a facility provided in the TRANSFORMATION program to enable
a user to easily and compactly perform an operation on a set of variables
instead of performing that operation on each of the variables individually.
This concept of DO-notation corresponds to the concept of FORTRAN DO-loops.
The following form of DO-notation would be used in a parameter which
points to a variable.

(V1' Vg. I)

V^ = the initial variable of the set

V2 = the criterion variable for termination of the set.

I = the increment

Examples:

(1, 5, 1) points to variables 1, 2, 3, ^, and 5-

(1, 5> 2) points to variables 1, 3, and 5-

(U, lU,3) points to variables U, 7, 10, and 13.

If the increment is not specified it is assumed to be 1, Example:

(2, 10, 1) is equivalent to (2, 10).

A. The major use of DO-notation is to indicate repetition of an instruction
on different sets of variables. Examples:

ADD(l,5,2)(6,8)(l2,lU) is equivalent to ADD(l)(6)(l2)

.

ADD(3)(T)(13).
ADD(5)(8)(ll|).

MUL(1,U)(100)(101,107,2) is equivalent to MUL(l) (lOO) (lOl)

.

MUL(2)(100)(103).
MUL(3)(100)(105).
MUL(U)(100)(10T).

If, in an instruction containing several parameters using DO

notation, the sets of variables are unequal in length, the instruction
will cycle until the longest set of variables has been satisfied.

The variables used in the shorter sets after they have been exhausted
will be the last variables of that set. Example:

MAX(1,T,3)(1^,15)(13,15,2). is equivalent to MAX(l) (l)4)(l3) •

MAX(U)(15)(15).
MAX(T)(15)(15).

The secondary use of DO-notation, called DO-notation ranges, is ur.ed

with the constant, output, and permute instructions. Instead of

indicating a repetition of the instruction on each variable in the
set, the instruction is executed once. The parameter in which the
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DO-notation range occurs .low points to a string of variables.
Examples

:

0UTPUT(S1)(2,T) . outputs the string of variables
2,3,U,5,6 and ?•

0UTPUT(S2) (3,7,2). outputs the string of variables

3,5, and T-

PERMUTE (l00)(3)(l0,15)(20,2l+,2).

has two parameters of DO-notation
ranges in one instruction. The instruction
places into variables 100 through 109, the
following variables: 3, 10,11,12,13,1^,15,
20,22,21+

Looking at the CONSTANT instruction, we see DO-notation ranges used
to indicate strings of fixed and floating point constants as well
as strings of variables.

The first parameter of CONSTANT can point to a variable or a string
of variables. The later is the only case which involves DO-notation
ranges, so the discussion will be confined to that case.

C0N(2,U)(1)(2)(3) places the fixed point constants one, two
and three, into the string of variables
2,3,U

By using DO-notation ranges with fixed point constants the equivalent
instruction would be

C0N(2,U)(1,3).

The next two examples are also equivalent. They both assign to

variables five through eight the floating point constants
2.5,5-0,7.5, and 10.0.

C0N( 5 ,8 )*2 .
5**5 . 0**7 .

5**10 .
0*

.

CON(5,8)*2.5,10.0,2.5*.
The initial values of the string of
floating point constants is 2.5- The
termination criterion is 10.0. The
increment is 2.5

All three types of DO-notation ranges can be used together in tho
CONSTANT instruction. The following example combines both of the
preceding sets of examples into one instruction.

CON(2,8)(1,3)*2.5,10.0,2.5*.

Note : If, when using DO-notation ranges with the CONSTANT instruction,
the string of variables is unequal in length to the total number of
fixed and/or floating point constants indicated, the string of constants
is truncated if it is longer and if it is shorter the last constant
is assigned to the remainder of the variables.
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K. Flag Notation

Flag notation is TRANSFORMATION'S version of indirect addressing. Instead
of a parameter pointing directly to a variable, it points indirectly to a
variable through another variable. The parameter points to a variable which
in turn points to another variable. This feature enables an instruction to
point to different sets of variables depending upon the values assigned to
the intermediate variables.

The main type of flag notation is called F-flag notation. F-flag notation
is indicated by inserting an F directly after the variable nixmber. Example:

ADD(TF)(8f)(9F). Restriction : The values in the
intermediate variables of flag-notation
(variables 7,8, and 9 in this example)
must be in fixed point representation and
must point to a valid variable niunber.

Let the notation Vn indicate variable n. Exeunple : V7 indicates variable 7-

If V7 = 100
V8 = 150
V9 = 180

then the preceding example would generate after the indirect addressing
takes place:

ADD(100)(150)(180).

F-flag notation can also be used with DO-notation.

If VIOO = 2 VllO = 6

VlOl = 13 Vlll = 16
V102 = 5 V112 = 9

Example

V120 = 10
V122 = 19
V12U = 13

then MUL(100F,102F)(110F,112F)(120F,12Uf,2). would generate after indirect

addressing.
MUL(2)(6)(10).
MUL(13)(16)(19).
MUL(5)(9)(13).

Note that the limits of the DO-notation are extracted form the intermediate
variables and not from the final variables.

The other type of flag notation is called D-Flag notation. Its only
use is with DO-notation. The difference between it and F-flag notation is
that the limits of the DO-notation with D-flag notation are derived from the
final variables after indirect addressing takes place. Example:

Using the same variable values as above.

MUL(100D,102D)(110D,112D)(120D,12Ud)

would generate after indirect addressing:

MUL(2,5)(6,9)(10,13).

or

MUL(2)(6)(10).
MUL(3)(7)(11).
MUL(U)(8)(12).
MUL(5)(9)(13).
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X. A TRANSFORMATIONS Example

Let us consider a set of data consisting of ten variables. Variable one

contains a zero for females and a one for males. Variables two through five

and eight through ten all range from zero to ninety-nine and are to be collapsed
into the numbers one to four representing quartiles. Variables six and seven

are to be recoded into a dichotomous variable depending if the value is five or

not five. The output is then split into males and females suitable for input

into two separate FREQUENCY programs. Also desired are averages from variables
two through ten before recoding takes place. Totals are kept during the regular
segment and then in the last card segment these are divided by the sample size
and printed.

TRANSFORMATIONS ( C )

.

PERMUTE (6)(8,10)(6,7).
ADD (1001)*1*(1001).
ADD (1002,1010)(2,10)(1002, 1010).
RECODE (2,8)"LT"*25*(2,8)*1*.
RECODE (2,8)"GE"*75*(2,8)*1+*.
RECODE (2,8) "GE"*50« ( 2 ,8 )*3* ( 2 ,8 )*2*

.

RECODE (9,10) "EQ"*5*(9,10 )*!*( 9 ,10)«0*

IF (l)"BAD""FEM""MALE".
"BAD" ABORT.
"FH4" 0UTPUT(S2)(2,10).

GO TO "END".
"MLE" OUTPUT (S3) (2,10).
"END" NOOP.

LAST.
DIVIDE (1002,1010) (1001) (1002,1010).
OUTPUT (P) (1001,1010).
END PROGRAM

inputs one row from cards
reorders the variables
increments row number by one
adds respective values to row totals
recodes first quartile values
recodes fourth quartile values
recodes third & second quartile values 1

creates dichotomous variables
branches based on male or female
aborts program due to bad data
outputs female data
branches around male output
outputs male data :

this instruction is only a placeholder
indicates beginning of last card segment
calculates averages ^:

prints sample size and averages

The regular segment is executed once for every row of card input data. Here
the values are recoded and output, while also row totals are kept in variables
greater than 1000. The last card segment is executed once to calculate and print
the averages.
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XI. Notes and Ideas

1. Missing data of the form -0.0 can be differentiated from 0.0 only in
the recode statement, so if this distinction must be made, -0.0 should first
be receded to another value before testing.

2. The valid outputs in the OUTPUT instruction are PRINT and/or
Sn, n ^ 15.

3. When collapsing data be careful not to overlap your recoding and in-

advertently recode values twice or more.

h. For those not familiar with the terminology in the RECODE instruction
more exaunples appear below.

Given

:

VI = 10
V2 = 23

V3 = 13
Vh = 89

V5 = 23
V6 = -T

The following condition sets have the respective truth values.

(1) "GT" (2) is false

(3) "LE" (U) is true
(2) "EQ" (5) is true
(6) "GE" *0* is false

(2) "NE" (5) is false

(6) "LT" (U) is true

If two or more condition sets are joined by "AND", they must all be true for

the logical product to be true. If two or more condition sets are joined

by "or", then the logical product is true if any of the condition sets are

true. If the connectives are mixed, then the "AND" connective is of higher
precedence than the other connectives in the same way that multiplication is

of higher precedence than addition in ordinary arithmetic.

5. The A-C, A-S, ELOG, LOG and SQU instructions have optionally avail-
able third and fourth parameters, a variable and a branch address. In the

case where the output is not defined or the input variable is invalid, the
third parameter is substituted for the output value and branches to the
branch address. If the branch address is not specified, processing continues
with the next instruction.

Examples

:

SQU(l)(l8)(200).
SQU(l)(l8)(200)"ERR".

6. Do not use F flag notation with the CONSTANT, PERMUTE, or OUTPUT
instructions

.

7. If you are inputting from a double precision matrix and have over

500 variables, beware! Change the input matrix to single precision before

TRANSFORMATIONS or see Bill Walter in the SOUPAC Office.
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BASIC POPULATION STATISTICS

In this section are the programs commonly used to provide the user

with a "first look" at his data. It is neither expected, nor is it a

good idea, that the researcher be naive about his data (it is, of course,

assumed that any hypothesis to be tested was made previous to collecting
.

the data). Tabulations, or "frequency counts," cross tabulations, sample

means, rank scores, etc. are all useful "summary statistics" that may

indicate warning signals concerning assumptions made by the experimenter

that might be questioned.

In addition, the statistics required for many basic techniques will

be found in this section. These include, for instance, the sample mean,

and other statistics derived from the moments of a sample, rank order

2
statistics, the non-parametric Mann Whitney U statistic, and the x statis-

tic for testing independence of variables (appropriate for considering the

hypothesis of independence of two or more variables from the same sample).

^.VY:

.
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FREQUENCY COUNTING AND
MEASURES OF ASSOCIATION

I. General Description

This program computes tables of the frequency of occurrence of

values that input variables take, and where appropriate, measures of
association may be computed. Input to the program may be in the form of
previously computed tables (on which measures of association will be

computed) or may be in the form of raw data. Only integer numbers
may be counted; decimal point data will be rounded. Negative values
are allowed.

A. FREQUENCY COUNTING

The following options are available

:

1, Either one-dimensional or two-dimensional tables may be
specified. For one-dimensional counts, the frequency of
occurrence for each value of the variable is listed. For
two-dimensional coionts, each value of the second variable
is counted separately for each value of the first variable.

2. Control variables may be used which enable counting to be done in

up to 12 dimensions. If control variables are specified, data
must be presorted on these variables. When the value of any
variable designated a control variable changes from one row
to the next, counting is stopped and a new table is started.
Thus counting proceeds as long as the values of all control
variables remain constant.

3t The minimimi and maximum values to be attained may be specified
separately for each variable to be counted (or, optionally,
not specified at all'^ . If either the maximum or minim-um values
are not specified, they will be determined from the data using
an extra read of the data. Values which fall below the
minimum or above the maximum are ignored. This capability adds
flexibility to the program and may be an appreciable cost saver.
Its misuse by gross estimates of minimum and maximum values
can, however, be costly.

h. For each cell in a one-dimensional table, the percentage, if
requested, of the total sample that were coimted there will be
printed. For two dimensional tables, the percentage of the row
and column may also be requested.

5. A weighting variable may be specified. Without a weighting
variable, frequency counts are advanced by one for each occurrence
of a value. VJhen a weighting variable is used, the frequency
coimts are advanced by the value of the weighting variable for
the row. Thus some rows of data may be given more importance
than others.
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Labels can be given for variables so that output is more
readable. Each label is restricted to eight characters or
less.

Input may be from previously computed tv;-o-dimensional tables,
from which measures of association can be directly computed.

MEASUEES OF AESO'IATION

Tl-ie following coefficients are calculated and printed on option for

two-way tables:

1. Chi-square and related coefficients

Let: n = total population of the table

n , = number of Vertical classification a (column a)
ab

and Horizontal classification b (row b)

b^

n ^ -^-^ab
• b a

O. - number of rows

3 = number of columns

Then: ch3 -square
ab

/H , - n n , V

( ab a. .b)

^a. -'\b/n

adjusted chi-square (Yate's correction Tor continuity"^ for 2x2
tables only =

ZZ /n - n n, - 1/^
, ( ab a r:

ab -^

a D

r - chi-square^/n -,'

1 + chi-square/n

/ eh i - s nuare /n ^
/

C and T are measures of contingency and can be looked up in con-

tingency tables. The maximum expected frequency is also printed.
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Lambda coefficients

Let: n - Max n
am , ab

b

n , = Max n
mb ab

a

n = Max n ,

. ,m , . b
b

n - Max n
m. a.

a

Lambda ~
a,

"-am
"*"

^ '^mb " ^.m

2n - n - n
• m m.

- rir,

Lambda H

Lambda V =

n - n
m.

]3 %b ~ %.
n - n-

•m.

Lambda coefficients will be indeterminate if all values lie in

one column or row.

Lambda H can be defined as the decrease in probability of error
in predicting the H-variable when knowledge of the value of the
V-variable is considered as opposed to random guessing of the

H-variable.

Nii^ety-rfive per cent confidence limits are calculated and printed
for Lambda H and Lambda V using the methods discussed by Goodman
and Kruskal in their second article. (See references). Lambda
is always between Lambda H and Lambda V.

Weighted Lambda Coefficients

n

Weighted Lambda H
a- a

am ,. ^ ab
- Max Z

b b a.

n

a -
Max Z _ab
b an

Weighted L/jmbda V

^ mb ,. ^ ab
Z Max Z '

b .b a b .b

P -

Max Z ^ab
a b n

b

These are Lamibda H and Lambda V calculated using weighted quantities

ab
1/a -^ and 1/3

ab respectively, instead of n
ab*
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No confidence limits are provided for t?ie weighted lambda coef-
ficients.

Gamma Coefficient

Let: PS
ab

ZZ

Z Z
a' b'

nab [a'>a b>b n„.>-,]

Z
a'

Z
b'

PD -^

;; "ab ta'>a b'>b
>^a'b'^

Then Gamma =
PS - PD
PS + PD

Ninety-five per cent confidence limits for Gamma are calculated
using the method outlined and preferred in the second article by
Goodman and Kruskal.

References

These coefficients are discussed and compared by Leo A. Goodinan and
VJilliam H. Kruskal in their article "Measures of Association for

Cross Classification", American Statistical Association Journal
,

December,, 19'?^.

The Gamma coefficient is their suggested measure.

The C coefficient was first suggested by Karl Pearson and the T

coefficient is due to Tchuprow.

The Lambda coefficients apparently were first suggested by Louis
Guttman ("The Predication of Personal Adjustment", Bulletin k8,

Social Science Research Council, New York, 19^1'

•

The developroent of the approximate sampling theory and of the
machinery for calculating the confidence intervals for Lambda and
Gamma was done in a sequel article by Goodman and Kruskal: "Measures
of Association for Cross Classification III; Approximate Sampling
Theory", American Statistical Association Journal , June, 1963-

The statistics that are requested will be printed immediately
following each table.

T . Restrictions

The program is limited currently to U50 input variables and 1000
tables. Tables are restricted to a maximum of 80,000 cells,
each of which can hold a maximum count of 32,767- As many tables as

will fit into work storage (80,000) will be computed in each read of

the data. If tables will fit into 80,000 cells, card input is allowed.
If maxima and minim.a are not specified for card input, data will be

transferred to disk during preread of data.
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Parameters

A. Main Parameter Card

Immediately following the program name FREQ.UENCY (mnemonic: FRE^i, the
following parameters are listed, each enclosed in parentheses with a

period after the last parameter used

:

Parameter
Number

1

2

3

k

Use or Meaning

Input Address.

- ignore blanks
1 - count blanks separately
2 - count blanks as zeroes

Spacing
- normal spacing

1 - one table per page

Address of labels.

Variable number of weight variable.

Type of input
- raw data
- where n is the number of

previously computed tables.

If n > 1, then input must be
from cards, eind each table is
a separate data deck.

If both parameters 1 and k are cards, the labels must precede data.

B. Subparameters

Subparameters follow the main parameter card and can be in any order.
A period must follow each subparameter statement though the statement
can be continued on more than one card. If the subparameter statement
is left out, the option is not used. In the following explanation
I - integer and F = real number.

Mnemonic

PER(I)(I)(I)

MIN*F*^-F*
.

,

MAX^F^^F* .

.

Use or Meaning

Per cents are requested
- no

1 - yes

l^t integer = total per cent
2^^ integer = row per cent

S-"" integer = column per cent

Minimum and maximum are given. The
last value is propagated to any
remaining variables. Data will be
reread if either MIN or MAX is missing



III.FRE.6

IV

Mnemonic

MEA(I)(I)(I)(I).
Only applicable to
2-way tables

Use or Meaning

Measures are requested

.2

- no
1 - yes

1^^ integer = X^ (with a code of
2 both X and a table of expected
frequencies will be printed)

2^^ integer = \ (lambda^

3,, integer - weighted X

k^ integer = 7 (gamma

CONTROL(lUl^

ONE(l,I,lUl,I,l)
TW0(I,I,I)(I,I,I^

Up to 10 control variables are allowed.

The I ' s should be the variable niimbers

of the control variables.

One and only one of these two must be
... in every program. ONE means one-way

tables. WO means two-way tables.
In ONE, (1,1,1) specifies one range of 1

tables. In TWO, (l,I, l) (l, I, l) specif:i|

one range of 2-dimensional tables.

The notation (l,I,l'> has the following meaning: If it is absent com-

pletely, i.e., ONE. or TWO. then all possible tables are calc\ilated.

The first integer is the initial value, the second is the terminal
value and the third is the increment. It means: take all values
starting at the first integer and stepping by the third integer until
you reach the second integer. If the third integer is missing, the
increment is taken to be one. If the second is also missing, then
the first is taken as a single table specification. As many as

wanted can be specified subject to the -f^ollowing restrictions: In
the two-way tables, no more than 5^0 separate ranges, i.e., (l,I,lHl;J
can be specified.

Labels

Labels can come from cards or temporary storage. Each label should

be treated as if it were two variables each k characters long. For
example, if there are 6 variables in the input data, then there would be

twelve variables for labels and the data card would be DATA(l2) (12AU) .

All the labels are treated as one row of input n variables long.

Labels need not be given for each variable but if a variable is skipped

and more labels follow, then it should be replaced with eight blanks.

V. Examples

1. FRE(C).
PER(l)

.

C0NTR0L(1)(3).
0NE(2,6,2)(9).
END P

Input is from cards; per cent of totals will be printed; control variables
are 1 and 3; resulting tables are 2, U, 6, and 9* Blanks will be ignored
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2. FRE(C) (2) (1) (C)(2).

PER(1)(1)(1).
TWO(3)(U)(2,6,2)(l,5,2).
END P

All per cents will be given; 2 will be the weighting variable; resulting
tables will be 3 vs U; 2 vs 1; 2 vs 3; 2 vs 5; U vs 1 ; U vs 3; U vs 5 ; 6 vs 1;
6 vs 3; 6 vs 5» Tables will be printed one per page and blanks will be

counted as zeroes.

Since both labels and data are on cards the deck will look like this:

FRE(C)

•

END S

DATA(n)(nA4)
label for first labeled variable label for last labeled variable
END#
DATA(n/2)( )
•

END#

3. FRE(S1)(1).
TWO.

MEA(2)(1)(1)(1).
END P

All possible two-way tables will be calculated; all four measures will be
calculated and the table of expected frequencies will be printed. Blanks
will be counted separately.

k. FRE(C)()()()()(2).
MEA(1)()(1).
END P

pInput is m the form of two previously computed tables. X and weighted X
will be calculated.

Since there are two tables the deck will look like this:

FRE(C)

•

END S

DATA

•

END#
DATA

END#

v>ti((6i!K»nc>
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VI. Output Examples

A. ONE-DIMENSIONAL TABLE

A one-dimensional frequency table might "be output as follows

:

VALUE
FREQ

h 5

25 30

TOTAL
60

This table indicates that the value 1 occiirred 3 times, that the
value h occurred 25 times, and so on, for a total of 60.

B. TWO-DIMENSIONAL TABLE

A two-dimensional frequency table might look like this:

VARIABLE 1 ACROSS
VARIABLE 2 DOWN

VALUE
2

5

T

SAMPLE SIZE = 23

This table would indicate that simultaneous observations of 1 for
variable 1 and 2 for variable 2 occurred once. A value of 3 for
variable 1 at the same time as a value of 5 for variable 2 occurs
8 times. The number of observations in the sample was 23.



RANK ORDERING PROGRAM

GeneraJ. Description

A. Purpose

The RANK ORDERING program receives as input raw data matrix and

produces as output a matrix in which each element has been replaced

by a number denoting the rank of the element WITHIN ITS COLUMN. In

other words, each column of the input matrix is considered a separate

variate and will be converted to a corresponding ranking.

The smallest variate-value is assigned rank 1.0, the next largest

a rank 2.0, etc., until the largest variate-value is assigned the

highest rank. In the case of tied values, identical ranks are assigned

to equal values , the rank -number being set equal to the average of the

rank which would occur if the tied values were distinguishable. This

is sometimes known as "mid-rank method".

B. References

Kendall, Maurice G., Rank Correlation Methods , Charles Griffin and

Co., Ltd. London, I9I+8.

Restrictions

A. Input

The input data to this program may come from any source. If cards
are used as input, the number of rows in the input matrix must be
specified on the data format card and the total number of elements
in the matrix may not exceed 30,000. The maximum number of rows
for any matrix input to this program is 30,000, and the maximum
number of columns for any matrix input to this program is U50.

B

.

Output

If an input matrix contains more than 30,000 elements, an automatic
partitioning of the input data occurs such that each partition contains
the maximum number of complete columns possible within the constraint
that no one partition may contain more than 30,000 elements.

The results of the ranking of each partition are output separately,
one partition per output address specified as a parameter on the pro-
gram parameter card. A maximum of twenty-one such output address are
allowed

.

CAUTION: If partitioning is anticipated, the user should specify one output
address for each partition anticipated. This warning applies especially in
the case where printed or punched output occurs. Printing and punching will
occur only for the partitions for which it is specified.
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The exception is for partitions over the twenty-first one. For partitions
beyond the twenty-first^ printing and punching is done if it was specified

for the twenty-first partition. However, no partitions beyond the twenty-

first one may be stored on a peripheral device (SEQUENTIAL address).

C. Data

Since all comparisons in this program are done in single word leng-

operands, in some cases the program may not be able to successfully
differentiate between two values which agree through the first five
significant digits and differ in subsequent digits.

III. Parameters

The parameters for the RANK ORDERING program must follow the program
name on the progreun call card in the order given below:

Parameter
Number Use or Meaning

1 Input Address.*

2-23 Output Address.

IV. Special Comments

If RANK ORDER correlation coefficient P (Spearman's rho) is desired,
the rankings should be input to the CORRELATION program (see individual
program description) and the Product Moment Correlation coefficient
obtained.

*If CARDS are used the DATA card must contain the number of rows as well

as the number of columns in the input matrix (See User's Guide for deta:



STANDARD SCORES

Note : Sample Size, Mean, Standard Deviation, Variance, Skevness and Kurtosis
are referred to as "Basic Statistics" in this write-up.

I. General Description

This program is used to calculate the following;

Mean : X .
=

J N

N p
N Z XT. - ( EX.

Variance: V. =
J

i=l ^J i=l
ij

N(d.f .)

where degrees of freedom :

d.f. = N see parameter h for

or explanation
N-1

Standard Deviation: S. = / V.
J J

Skewness

No_ Np_ N
E X .

. -X . ( 3 . 0* Z XT . -X . ( 3 . 0* E X .
. -N*X . )

)

i=l ^J J i=i ^J J i=l ^J

NS:
J

Kurtosis: i=l ^'^
-^

E x:.-X.(U.O* E X.-X.(6.0* E XT.-X.(U.O* E X. .-N*X.)))

i=l J J i=l ^J J i=l ^J

NS

- 3.0

Standardized Scores: Z,

X. . - X.

ij

Standardized Scores about Mean = A, and Std. Dev. = B: Z. . B+A

b+(j-l)
E . X

Moving Averages : y - k=j k

^J
~ where b = length of the period

II. Restrictions

A. The maximum number of variables is ^450.

B. "Basic Statistics" may be calculated using as many as 30 control
variables. Data must be presorted (for instance with SORT-MERGE or
on a card sorting machine) on the control variables.
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.

In obtaining moving averages ^here nvar = number of variables and
b = length of period, nvar*b is fixed for any core size. If a
design will not fit, a message will be printed giving proper incre-
ment for Region.

D. Moving averages are exclusive of all other options.

E. Output is of four categories:
1

.

With or Without Control Breaks
a. "Basic Statistics"
b. Moving averages: "Basic Statistics"

2. Without Control Breaks
a. Standard scores about data mean and standard deviation.

Printed output includes "Basic Statistics."
b. Standard scores about a given mean and standard deviation.

Printed output includes "Basic Statistics."
c. Both Sections 2a and 2b at the same time and output may be

printed and/or stored on two different storage locations.
d. Control breaks may not be used with Standard Scores option,

III. Parameters

The parameters appear on the program call card following the program name
STANDARD SCORES (or the program mnemonic STA) in this order:

Parameter
Number Description

Input Address. SEQUENTIAL 1-15- Cards if only
"Basic Statistics" desired, or if precalculated
means and standard deviations are supplied (see

parameter 10)

.

Output Address of Standardized Scores.

Output Address for "Basic Statistics." "Basic
Statistics" can be put out on a temporary unit.
Output is in the form of six colijmn vectors (N,

X , S
.

, V
.

, Skew
.

, Kurt . )

.

J J J J

If 1, use N-1, if 0, use N for denominator of

standard deviations. N-1 gives an unbiased esti-

mate of the population standard deviation and

population variance. N gives the sample standard
deviation and sample variance.

Output Address for Standard Scores about a

specified Mean and Standard Deviation. SEQUENTIAL

1-15 and/ or PRINT.

If parameter 5 is being used, place desired Mean
between asterisks, for example, *50*.
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Parameter
Number Description

If parameter 5 is being used, place desired
Standard Deviation between asterisks, for
example, *5*.

Moving Averages: Put the number of periods
(observations) over which it is desired that the
data be averaged (i.e. b). If control variables
are being used and/or the actual number of obser-

vations is less than stated, the data will be
averaged using the actual number of observations,

If set equal to 1, "Basic Statistics" will be
corrected for missing data. Missing data must
be coded as -0.0 (blanks).

10 Input Address of Means and Standard Deviations.
First row contains means, second row contains
standard deviations. All additional rows input
are ignored. Valid only for standard scores.

If using controls, on a separate card immediately after the STANDARD
SCORES card, list variable num.bers of those variables used as controls.
For example, if controlling on variables 1, 2, and h:

STA(S2)(P).
$C-B(L)(2)(M.

NOTE : If there is only 1 observation and parameter h is set to 1, then the
"Basic Statistics" for that variable will be set to zero. If blanks are
checked and standard scores are requested, those observations which have a

blank will remain blank after calculation of standard scores.

WbdSKSA!^
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IV. Example 1 Example 2

(Use of Parameter 10) // EXEC SOUP
//SYSIN DD * 1

// EXEC SOUP MAT. 1
//SYSIN DD * M0VE(C)(S1/P).
MAT. 1 END P 1
M0V(C)(S1). STA(S1)()(P). 2 1
END P STA(S1()(P)(1). 3 1
C0R(S1)(S2). 2 STA(S1)(P)(P). k 1
MAT. 3 STA(S1)()()()()****(5). 5
TRA(S2)(S3). END S

END P DATA(36)(36F2.0)
STA(S1)(P)()()()****()()(S3). h

END S Data deck is placed here
DATA(10)(10F1.0)

END#
/*

END#
/*

Explanation of Example 1

Program 1 vill move data from cards to Sequential 1.

Program 2 will calculate means, standard deviations, and sample size, and
save results in column form on Sequential 2.

Program 3 transposes contents of Sequential 2 and stores them in row form
on Sequential 3.

Program h reads means, standard deviations, from Sequential 3 (ignoring
all subsequent rows) and calculates and prints Standard Scores.

Explanation of Example 2

Program 2 will print "Basic Statistics" for variable, based on sample
standard deviation. '^

Program 3 will print "Basic Statistics" for variable, based on unbiased
estimate of population standard deviation.

Program h will print standard scores matrix in addition to "Basic H
Statistics." ^

Program 5 will print "Basic Statistics" over every set of 5 periods |
(moving averages).

1
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Chapter 1. General Description
^

1.1 Introduction

BALMOVA 5 is a general analysis of variance program applicable to a

wide-range of balanced designs. In the case of designs with a replication
factor^ BALANOVA 5 allows inequality in the number of replications in each
cell. If the number of replications is equal or proportional, the analysis
is handled by least squares (weighted means) . If the number of replications
is not proportional then an unweighted means analysis is performed. This
is an approximation to the least squares solution.

BALANOVA 5 accepts some designs that are not completely crossed, namely
those nested designs in which all main factors are balanced. Hence hierarchical
designs are allowed. As well, repeated measures designs are allowed. In these
designs the replication factor is not nested in all the other factors.

The design model may be fixed-effects, random- effects or mixed. BALANOVA 5

automatically determines all the legal sources of variation (main effects and
interactions) and determines the correct denominator mean square for those
sources which can be tested by F test. In order to do this, BALANOVA 5 first
generates the expected mean square table which is printed in readable form.
The method used closely follows Scheffe (1959), Chapter 8.

BALANOVA 5 will accept most of the designs described in Winer (1962),
Chapters 3, h, 5, 6, and 7 and Lindquist (1953), Chapters 3, 5, 6, T, 8, 9,

10, and 13 (Types I, III, VI). Chapter 2 and Appendix A of this write-up
contain a large number of examples drawn from these two books.

For proper use of BALANOVA 5, the following general warnings should be

kept in mind

:

1. A general program such as BALANOVA 5 encourages the use
of statistics in a "cook-book" manner. Data is generated
to fit the input specifications of the program with no
consideration given to the theory of analysis of variance.
The experimenter who uses a computer program in this way
often neglects to consider whether the statistical test
is appropriate for the work he is interested in and whether
the assumptions needed for the test are satisfied in the
particular experiment he has used.

2. Results printed by a program such as BALANOVA are often accepted

by the experimenter as being infallible when, in fact, all

calculations on a digital computer are subject to possible pro-

greunming error, round-off error or simple machine error. Always

double check your results to make sure they "make sense."

3. In the particular case of analysis of variance, the idea
has become widespread that the summary table of F ratios
is the most important part of the analysis. This is not
the case . The most important part of analysis of variance

<fStitsag6sBtsii-
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is the estimation of the main effects and the
interactions. Only by looking at their size can
the experimenter evaluate what is happening in

his experiment. In order to encourage this use
of analysis of variance, BALANOVA 5 prints a table
of marginal means which allows easy calculation of
all the effects in the experiment. The F table is

only a set of warning signals. A non- significant
F indicates that the corresponding differences
between effects can be attributed to sheer chance.

h. BALANOVA 5 performs an unweighted-means analysis when
the replication numbers are non-proportional. The
author fears that this option will be used too often and
without consideration of its dangers. The unweighted-
means solution is often not satisfactory ajid references
on analysis of variajice should be consulted. ( Scheffe,

1959, Winer, I962, Lindquist, . 1953)

•

BALANOVA 5 was designed to reduce the great amount of hand computation
needed in analysis of variance calculations. It was not intended to eliminate
the necessity of the user being familiar with the theory of analysis of vari-
ance. It is hoped that the above comments will discourage some indiscriminant
use of BALANOVA 5-

1.2 Special Features

The output from BALANOVA 5 consists of

1. A table of the expected mean squares in readable
form.

2. The number of replications in each cell in the

case of designs with a replication factor.

3. The table of marginal means. All means entering
in the computation of the sum of squares are printed.

k. The analysis of variance summary table including,
for each source of variation, the sum of squares
and mean square, and for each source with denominator,
the F ratio and the probability of the chance occurance
of the F ratio.

A feature of BALANOVA 5 is its flexible specification of analysis of
variance designs, allowing a wide range of designs to be described by a
common code

.

A large number of checks are made by BALANOVA 5 to ensure that the design
is legal and that the data correspond to the design. Diagnostics are printed
to indicate all error conditions.
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1.3 Legal Design of BALMOVA ^

Consider the following definitions, taken from Scheffe (1959) • Let

there be p factors in a design, not counting the replication factor, if

there is one. A cell is specified by a set of p levels, one for each
factor. The layout of design is complete if there is at least one ob-

servation in every cell. The factors in such a design are completely
crossed . If the design is complete and there is a replication factor
(i.e. all cells have at least one observation and at least one cell has
more than one observation "^ then the design is considered to be a Class A
design in BALANOVA 5-

There are many analysis of variance designs which are not complete
in the above sense. Examples of incomplete designs are Latin-square,
incomplete blocks and nested designs. The only incomplete designs
which are allowed in BALANOVA 5 are nested designs which are balanced in

all factors except for the replication factor (which need not be balanced)

.

These incomplete designs are called Class B and C designs. "Nesting"
^

"balanced" and "replication factor" are defined in the next three para-
graphs. These definitions are illustrated in Chapter 2.

Nesting may be defined as follows: The levels of a factor C are

nested within the levels of a factor A (in short, C is nested within A)

if and only if each level of C appears with only a single level of A in
the observations. Note that if C is not nested within A, it is crossed
with A, but only if every level of C appears with every level of A is
C completely crossed with A. Latin-square and incomplete block designs
are only partly crossed.

A nested factor C is balanced if the number of levels of C is the same
within each combination of those factors within which C is nested and the
factors (if any) which are crossed with C are completely crossed.

A replication factor , in BALANOVA 5? is a factor which is nested within
one or more other factors, but not necessarily within all other factors.
Furthermore, no factor may be nested within the replication factor. That isj

a factor is a replication factor if and only if for every other factor A in
the design, it is either nested within A or crossed with A. A replication
factor may be nested within some factors and crossed with others. There can
be at most one replication factor in a design.

The distinction is made between replication factors and other nested
factors in BALANOVA 5 since replication factors do not have to be balanced .

All other factors must be balanced.

Using these definitions, the following designs are legal in BALANOVA ^.

Class A designs (completely crossed with nested replications)

Class A designs contain (p + l) factors of which p are the main factors
and the other factor is the replication factor. The following two conditions
must both be met for the design to be Class A.
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(a) All p main factors are completely crossed.

(b) The replication factor is nested in all main factors.

Thus one-way and factorial designs are Class A designs.

Class B designs (other replication designs)

Class B designs also contain (p + 1) factors of which p are the main
factors and the other factor is the replication factor. However one or
both of the two conditions, (a) and (b)^ are not satisfied in Class B
designs.

When (a) is not satisfied, that is, the p main factors are not
completely crossed, then the main factors must satisfy the following
condition.

(a') Consider any two main factors, A and B. Either A is completely
crossed with B, or A is nested within B or B is nested within
A. This must be true for all pairs of main factors. Further-
more, at least one pair must have the nested relationship or
else (a"^ would be satisfied.

When (b) is not satisfied, then the following condition must be true.

(b') The replication factor is nested in at least one but not all
main factors. Note that the requirement that the replication
factor be nested in at least one factor is part of the basic
definition of a replication factor.

Class B designs then can be of the following two types.

Hierarchical designs: (a') and (b) are satisfied. The replication
factor is nested in all factors but there is some nesting among the main
factors.

Repeated measures designs: (b') is satisfied. Either (a) or (a') can
be satisfied. The necessary feature (b') of repeated measures designs is

that the replication factor is crossed with one or more of the main factors.
'I'he factors in which the replication factor is nested may themselves be eithe:

crossed (a) or nested (a').

Class C designs (no replication factor')

Class C designs have p factors and there is no replication factor.
All factors must be balanced. For each pair of factors, e.g. factors A
und B, either A is completely crossed with B, or A is nested within B or
B is nested within A. There does not necessarily have to be any nesting
at all.
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In sujranary, then, designs are classed in the following way in BALMOVA
5. Class A and B designs have a replication factor. Class C designs do not.

Class A designs are distinquished from Class B designs in that a Class A
must have l) all main factors completely crossed and 2) the replication
factor nested in all main factors. Class B designs violate one or both
these requirements.

In Class A and B designs, the replication factor does not need to be

balanced. However all nested factors, except the replication factor (if

any), must be balanced. Recall that in Class A designs, the replication
factor is the only nested factor.

As explained above, the replication factor is distinquished from
other nested factors since it does not have to be balanced. There are

two other reasons for distinguishing the replication factor from other
nested factors. These reasons are important even if the replication
factor is balanced.

1. In Class A designs (completely crossed with replications) only
cell means are stored in the computer and thus very large designs
can be accommodated. The allowable number of replications in
each cell is virtually unlimited.

2. For all replication designs, whether of Class A or B, the level
number for the replication factor in each nest does not need
to run from one up to the maximum number of levels in each
nest as it does for all other factors. Any convenient numbering
of the replications may be used (e.g. a unique number for every
subject in the experiment, regardless of the nest within which
he is) . This feature of BALANOVA 5 is especially useful when
several dependent variables are analyzed and there is missing
data for some of the subjects for some of the dependent variables.

l.k Calculations for equal and unequal number of replications

The calculations performed by BALANOVA 5 for designs with a replication
factor (Class A and B designs) depend on whether the number of replications
in each cell are equal or unequal. If the numbers are equal, the standard
analysis of variance calculation is made (least-squares or weighted means
analysis). If the numbers are unequal, a check is first made to see if the
cell N's are proportional . In a two-way analysis of variance, for example,
the cell N's are proportional if the number of replications in the ij cell.
N
IJ-

satisfies

%j =
"it "^

"t.i

N
TT

where the T's indicate marginal totals. If the cell N's are proportional,
BALANOVA 5 makes the least- squares calculations, i.e. weighted means are
used. If the cell N's are not proportional, then the method of unweighted
means is used (See Scheffe, pp. 262-3 or Winer, pp. 222-^).

jSiSsssasieief>i-
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In general, if i, j, k,..., A are those factors within which the
replication factor is nested (not necessarily all the factors in the design),
and if Nijk...X ^^ "^^^ number of replications in a particular nested cell,
then the cell N's are proportional, if, for all combinations ijk...A,

ijk. . .A

TJ X N X
iTT.. .T TJT...T

(N )

q-1

X N,
TTT...X

In this formula, the T's indicate marginal totals and Q is the number of
factors within which the replication factor is nested. In particular, the
one-way analysis with unequal N's is a proportional design (i.e. the cell
N's are proportional) by this definition, since

N. =
1

N.
1

(Nt)

— = "i

In fact, any design in which the replication factor is nested in only one
factor is a proportional design.

1.5 Parameters

Each observation (row of data) input to this program must be identi-
fied by a number for each factor including the replication factor. These
numbers (which cannot be read in I format) represent the levels of the
corresponding factors and must precede the dependent variables. In the
output produced by the program, each factor is given a unique letter name,

beginning with A. Thus the first col\amn of the input data corresponds to
the levels of factor A which is described on the first factor specification
card (see below). Each additional factor is given the next letter in the
alphabet, and a corresponding factor specification card. The dependent
variables follow the factor levels on the input data, and they are numbered
one through the total number of dependent variables, in the output of the
program.

On the program call card, the following parameters follow the program
name, BALANOVA 5; with the first five psirameters being required.

Parameter
Number

1

2

Description

Input Address. CARDS or SEQUENTIAL 1-15

.

Number of factors counting replication factor
if there is one. Maximum = 10.

3

h

5-13

Number of dependent variables.

st
Number of levels of the 1 factor.

Number of levels of the 2 -10 factors.



Parameter
Nxomber

Ik
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Description

1 if desire unweighted means analysis even
though have proportional cell frequencies.

1 to suppress printing of all means.

Following the program card is a separate suhparameter card (factor speci-
fication card) for each factor in the order in which the factors appear in

the input data. Each card has the following parameters.

Parameter
Number Description

if fixed factor
1 if random factor

3-11

if not the replication factor
1 if is. the replication factor

Factors in which this factor is nested

As in other SOUPAC programs, parameters at the end of the card which are
not used may be deleted and the period appear after the last non-zero parameter,
The factor specification cards must be followed by an END PROGRAM card.

1^6^ Specification of a Design

Any design is described by listing the following information about each
factor in the design, including the replication factor if there is one. The
information for each factor is punched on a separate card (a factor specifi-
cation card), and the cards should be in the same order as the factors are
in the input data. Each parameter should be enclosed in parentheses, and each
card terminated by a period.

Parameter 1

Parameter 2

Parameter 3-11

Type of factor. The first parameter on each
factor specification card should be a zero
if the factor is fixed, and a one if it is

random. The replication factor is always a

random factor . At least one factor in every
design must be random.

Replication Factor . If the design has a
replication factor, this is indicated by
punching a one for the second parameter. A
design may have only one replication factor.
If there is no replication factor, the second
parameter should be zero (or blank) on all
of the factor specification cards.

Nesting . The factors in which the given factor
(the one to which this card refers) is nested
are listed. Factors are numbered from one
through the niimber of factors in the design.
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If the factor is not nested, parameters 3-11
may te completely omitted.

An example of this way of specifying a design will be now given. Con-
sider a two-way analysis of variance with subjects within cells. The
design is considered to have three (not two) factors, namely A and B, the
main factors, and C, the replication factor. Suppose there are 3 levels
of A and h levels of B and that each cell has 10 subjects. The cards used
to perform this analysis are listed below. Each line corresponds to one
IBM card.

BALAWOVA(CAEDS ) ( 3 ) (1 ) ( 3 ) ( U ) (10 )

.

(0)(0).
(0)(0).
(1)(1)(1)(2).
EKD PROGRAM

The first card listed above calls the BALANOVA program. The first
parameter is the location of the data (CARDS), the second is the n\jmber

of factors (3), the third is the number of dependent variables (l), the
fourth is the number of levels of the first factor (3), followed by the
number of levels of the second factor (U), and finally the number of
levels of the last factor, which is the maximum cell size (lO) when con-
sidering the replication factor.

The second card is the factor specification card for factor 1. The
first 2 parameters are zero, labeling this factor as fixed, and as not
being the replication factor. The third card is the factor specification
card for factor 2 which is also fixed, and not the replication factor.

Note that parameters 3-11 are blank, as factors 1 and 2 are not nested in

any other factors.

The fourth card is the factor specification card for factor 3. Its

four parameters denote it as a random factor, as the replication factor,

and as nested in factors 1 and 2. The fifth card terminates the BALANOVA

program.

I

'KHiSaKeissiSR
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Chapter 2. Design Examples

2.1 Class A Designs : (Completely crossed with nested replications)

Single-factor designs (Winer, Chapter 3; Lindquist, Chapter 3)

The single-factor design is the simplest analysis of variance design.

It is often called the one-way analysis of variance or the simple-randomized

groups design. See the Winer and Lindquist references and also Hays,

Chapters 12 and 13, for a detailed discussion of this design.

The program cards for a design with 5 groups of 20 subjects each is

shown below. The groups are considered to be levels of factor 1 and the
subjects are factor 2. The order of the factors is the same on the main param-

eter card, on the factor cards, and punched on the input cards.

BALM0VA5 (C ) (2) (l) ( 5) (20)

.

(0).

(1)(1)(1).
END P

Note that in this design no subject appears in more than one group.
Hence the subject factor (factor 2) is nested within the group factor (factor
l). Note also that the replication factor is listed as a random factor while
the group factor is fixed. It would be possible to consider the group factor
as a random factor. See, e.g., Winer, pp. 56-63. However, in the single-
factor design the calculations are unchanged regardless of what type the main
factor is. So the choice of fixed or random for the type of the main factor
is immaterial in the input to Balanova 5- The interpretation of the results,
however, depends on the type of factor assvimed.

If the groups are of unequal size, the program does not have to be alter-
ed except that the number of levels of the replication factor must be greater
than or equal to the number of replications in the largest groups. For ex-
ample, if the groups have sizes 10, 12, 15, 9? 20, then the above program is

still correct.

Factorial designs (Winer, Chapter 5 and 6; Lindquist , Chapters 5s 8? 9j 10

)

In these designs, subjects are assigned to groups. Each group is iden-
tified by a set of levels, one level for each main factor in the design. The
levels of a factor may represent different experimental treatments or a
classification of a continuum into discrete levels.

Three examples from Winer and Lindquist are given below. Further ex-
amples of Class A designs may be found in Appendix A.

Winer, pp. 233-238

This is a 2 X 3 factorial design with three observations per cell. The
program cards are

:
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MLAN0VA5 (C)(3)(l)(2)(3)(3).
(0).

(0).

(1)(1)(1)(2).
END P

Note that the subject factor (factor 3) is nested in both factor 1 and
factor 2, since any subject is only treated by one level of factor 1 and one
level of factor 2. The replication factor is random while the main factors
are fixed. Either or both of the main factors could be random. The F tests
would vary depending on this choice. Balanova 5 makes the correct tests de-
pending on the factor type indications. See Winer, pp. 170-17^.

Winer, pp. 2l;l-2^U

This is a 2 X U factorial design with unequal cell frequencies. The
factors are specified in the same way as for an equal cell frequency design
except that the niunber of levels of the replication factor is set greater
than or equal to the maxim-um cell frequency. The calculations are carried
out using the method of unweighted means unless the cell frequencies are propor-

tional, in which case the least squares analysis of variance calculations are
carried out.

BALAN0VA5 (C ) (3 ) (l ) (2) (U ) ( 5)

.

(0).

(0).

(1)(1)(1)(2).
END P

As mentioned in Winer (p. 2^3, below Table 6.3-3) both main factors are
assumed to be fixed.

Lindquist, pp. 226-228

This is a completely crossed design with proportional cell frequencies.
The program cards are:

BALAN0VA5 (C) (U) (l ) (2) (U ) (3) (8)

.

(0).

(0).

(0).

(1)(1)(1)(2)(3).
END P

No special indication is needed that the design is proportional.
nova 5 will discover that, for all ijk.

Bala-

N. .,

N N N
iTT TjT TTk

(N,
TTT)

where '^±^-^ is the niomber of subjects in cell ijk and a T in a subscript indi-
cates a marginal total.
at the bottom of page 226) has N. = 6.

ijk

For example, cell 122 (the 5th column of the chart
Now
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N=I+ + l4 + U + 6 + 6 + 6 + 8 + 8 + 8 + 5 + 5 + 5

N =6 + 6-^6 + 6 + 6 + 6 = 36

= 69

N,
TT2

U + 6 + 8 + 5 + i+ + 6 + 8 + 5 = ii6

N = total number of replications = 138

N N N'•1 mnr^'mpm 'rprpp

(N,
TTT)

69 X 36 X k6

(138)2
ijk

A similar equality will be found for all ijk. Hence the design is propor-
tional .

2.2 Class B designs (other replication designs)

All Class B designs have a replication factor but at least one of the
two conditions for a Class A design is not satisfied. In repeated measures
(below) , the replication factor is not nested in all the other factors in the
design. In hierarchical designs (below), the non-replication factors are
nested rather than crossed.

Repeated measures designs (Winer, Chapter 7; Lindquist, Chapter 13)

In repeated measures designs, the replication factor is not nested within
all the other factors as it is in Class A designs. The replication factor is

crossed with one or more factors in the design.

Four examples from Winer are given below. Lindquist 's Type I, IV and VI
are similar to these designs and are listed in Appendix A. The designs dis-
cussed in Winer, Chapter k, (Single-factor experiments having repeated mea-
sures) are not considered to be Class B designs since the subject factor is

not nested in any factor and hence cannot be considered to be a replication
factor in Balanova 5. Such designs are considered to be Class C designs.

All repeated measures designs require additional assumptions to ensure
the validity of the tests. It is suffested that Scheffe and Winer be con-
sulted about these assumptions.

Winer, pp. 302-318

This design has two main factors 1 and 2 with subjects nested within
factor 1. Factor 1 is the group factor. The program cards for the data in
Table 7-2-3 are:

BALAN0VA5 (C ) (3) (l ) (2) (i|) (3)

.

(0).

(0).

(1)(1)(1).
ENDP

Note that factor 3 (subjects) is a random factor and that it is nested only in
factor 1. Also note that although there are six subjects altogether, there
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I

are only 3 vithin each nest, namely vithin each level of factor 1 and hence
the number of levels for factor 3 ( subjects) is 3. As will be pointed out in

more detail in Chapter 3, the subjects may retain their original numbering
from 1 to 6 rather than being numbered from 1 to 3 in each nest as would be
the case if factor 3 (subjects) were not a replication factor.

As discussed in Winer, p. 3l8, either or both of factors 1 and 2 may be
random rather than fixed, in which case Balanova 5 will change the tests
appropriately and print out the appropriate expected mean square table.

A

Winer, pp. 319-337

This is a repeated measures design with repeated measures on two com-
pletely crossed factors. The program cards for the data in Table T.^-3 are;

BALAN0VA5 (C ) (1+ ) (l ) (2) (3 ) (3 ) (3)

.

(0).

(0).

(0).

(1)(1)(1).
END P

Note that factor h (subjects) is only nested within factor 1 while factors 1,

2 and 3 are completely crossed and factor h (subjects) is crossed with factors

2 and 3. Factor h (subjects), again, is a random factor.

On page 335, Winer discussed the tests when some of the factors 1, 2 or

3 are random. Balanova 5 follows these rules automatically.

Winer, pp. 337-3^9

The designs in this section also have three main factors but the repli-
cation factor is nested in two of them. The program cards are:

BALAN0VA5 (C) (U) (l ) (2) (2) (U ) (3)

.

(0).

(0).

(0).

(1)(1)(1)(2).
END P

Again the general form of the expected mean squares in the case of some of the

random factors is given on pp. 3^7-3^8. Balanova 5 prints out the expected me

square table appropriate to the design chosen and makes the correct tests.

Winer, pp. 37i;-378

The case of unequal group size is also handled by Balanova 5- If the
number of replications within each nest is proportional , then the exact anal-
ysis of variance is performed. Winer calls this the least-squares solution in

Table 7-8-6. Note that if the replication factor is nested in only one factor
then it is proportional and the least-squares solution will be performed.

If the number of replications is not proportional, then an unweighted-
means analysis is performed.
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If it is desired in the proportional case to perform the unweighted-
means analysis anyway, an override is available. See main program card,

parameter lU in Section 1.5.

The factor specification table for the unequal number of replications
case is identical to the equal case except that the entry under Number of

Levels must be the maximum number of levels of the replication factor in any
one nest. For example, the data in Table 7-8-3 would have the program cards:

BALAN0VA5 (C ) (3) (l) (2) (3) (5)

.

(0).

(0).

(1)(1)(1).
END P

For these data, the design is proportional, and Balanova 5 would normally
perform the least squares solution. The unweighted solution could be per-
formed instead if an override is given. Both solutions (see Tables 7-8-5 and
7.8-6) have been checked with Balanova 5-

Hierarchical designs (Winer, Chapter 5; Lindquist, Chapter 7)

In hierarchical designs, the replication factor is nested in all the
main factors, but all the main factors are not crossed. Some of the main
factors are nested. Two designs from Winer are illustrated below. Further
examples from Winer and Lindquist are given in Appendix A.

Winer, pp. I8I1-I87

The hospitals v/-ithin drugs example on p. iS^t has the following program
cards if there are n = 20 patients in each hospital.

BALAN0VA5 (C) (3) (l) (2) (3) (20)

.

(0).

(0)(0)(1).
(1)(1)(1)(2).
END P

Hospitals (factor 2) are nested within drugs (factor l) since 'each hospital
appears with only one drug. The number of levels for hospitals is three
rather than six since there are only three hospitals in each level of drug.
Patients are nested in hospitals and drugs and patients (factor 3) is the
replication factor since no factor is nested within patients.

Note that the factorial design (Class A) given on the bottom of p,

has program cards:

BALAN0VA5 (C ) (3) (l ) (2) (6) (lO)

.

(0).

(0).

(1)(1)(1)(2).
END P

185

Hospitals (factor 2) is no longer nested in drugs (factor l) and the number of
levels of hospitals (factor 3) is now 6 rather than 3- Furthermore, there are
only 10 patients in each cell.
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The partially hierarchical design on p. l86 (Table 5.12-1) has factor
specification table (for n = 20):

BALAN0VA5 (C)(U)(l)(2)(3)(2)(20).
(0).

(0)(0)(1).
(0).

(1)(1)(1)(2)(3).
END P

Factors 1, 2 and 3 are called factors A, B and C in Winer.

2.3 Class C designs (no replication factor)

Class C designs have no replication factor and hence must be balanced.
The factors may be crossed or nested. Several examples are given belov and
more are given in Appendix A.

Winer, pp. 111-116

The designs in Winer, Chapter U, are repeated measures designs but the
subject factor is not nested. Therefore the subject factor cannot be con-
sidered a replication factor and the design cannot be Class B. The design
on pp. 111-116 has the following program cards:

BALAN0VA5 (C ) (2) (l ) ( U ) ( 5)

.

(0).

(1).

END P

Note that the person factor 2 is of random type. At least one factor in any
design must be random for there to be a denominator term for an F ratio.
Factors 1 and 2 are completely crossed; therefore, no nesting is indicated.
Also there is no replication factor, so this parameter is left blank. Bala-
nova 5 will make the correct test in this design, namely testing the drug
factor, factor 1, against the interaction mean square.

The rationale for the test is in Winer, pp. 116-12U. The test of homo-
geneity of covariance is not made by Balanova 5 just as no test of homogen-
eity of variance is made for any design input to Balanova 5-

Winer, p. 289

The Aborn et al design has no replication factor and hence is a Class C

design. The analysis, after the transformation of the data and estimation
of missing data, involves pooling the interactions into one mean square and
using the pooled estimate as the denominator term to test the three main
effects. This procedure cannot be done automatically in Balanova 5- The
following steps are suggested. Use the following program:

BALAN0VA5 (C ) (3 ) (l) (6) (4 ) (3 )

.

(0).

(0).

(1).

END P
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JJote that one of the factors is stated to be random. This is done solely

in order to allow Balanova 5 to function since the program requires that

there he a legal denominator term. If all factors were fixed, there would
be no denominator. The summary table printed by Balanova 5 will be used
only for the sum of squares, not for the F ratios, which will be incorrect
since they are based on a model having a random factor and in the real
design no factor is random. Pool the interaction sum of squares, form the
mean squares and carry out the correct F tests by hand.

The preliminary square root transformation of the data and estimation of
missing data must be done by a Transformations program.

Nested designs of Class C

The impression may have been given that no nest factors are allowed in
Class C designs. This is not the case. Class C designs have no replication
factor (which would be a nested factor) but other factors can be nested be-
sides replication factors. Consider the following design:

BALM0VA5 (C) (3) (l) (3) (3) (lO)

.

(0).

(0)(0)(1).
(1).

EM) P

A concrete realization is perhaps hard to give but this design means simply
that factor 2 is nested in factor 1 and both factors are crossed with factor 3

(subjects)

.

^^laBSsissiSb:
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Chapter 3' Preparation of Input

3-1 Introduction

The following rules apply to the assignment of factor levels in all

types of designs. There is usually no need to rekeypunch existing data
however, as it is almost always possible to create the factor levels in
the TRANSFORMATIONS program. If you need help using this program, see a

SOUPAC consultant.

(a) Non-replication Factors in Class A, B and C designs

The levels for non-replication factors must run from one (l) con-
secutively up to the number of levels given on the BALANOVA call card.
E.g., if a factor represents four treatment groups, these groups must be
numbered 1, 2, 3> and h and each subject's row or rows in the data matrix
must have a 1, 2, 3, or h punched to indicate the group he is in. If the
factor is nested, the level numbers must run from one (l) up, in each
cell of the nest. See the example given in Section 3-2.

jh) Replication Factors in Class A design

The replication numbers (level numbers "> can be anything , for example,
a subject identification number. The subject numbers do not have to be
unique either in a group or between groups. In fact, to tell the truth,

in Class A designs, the replication level is not used but it must never-
theless appear, even if it is a dummy. This statement does not apply to
other design classes.

(c) Replication Factors in Class B designs, of repeated measures type

Special care must be taken with the replication levels in those designs
Let us divide the non-replication factors into two groups:

a-set: those factors in which the replication factor is nested.

3-set: all other factors -

replication factor.

i.e. those factors crossed with the

If the p-set is empty, the design is of hierarchical rather than repeated
measures type. See paragraph (d) below.

Let us denote by an a-cell a particular set of levels of the factors in

the a-set. The replications in this cell may be any values (not necessarily
from one (1) up) but must be distinct. Again, the numberings in two differe
a- cells do not have to be distinct, but can be. In other words, if the
replication factor is subjects, an identification number may be used as the

replication level. Now each subject appears in more than one row (card) of
the data matrix since each subject appears with every combination of levels
of the factors in the 3-sst. Now it should be obvious that every row that
refers to the same subject has to have the same replication number. This is

the only way that BALANOVA 5 can tell that two different rows refer to the

same subject.
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(d'^ Replication Factors in Class B designs, of hierarchical type

The subject niimbers must all be different within any one cell (one

level set of the non-replication factors) but may be the same over
different cells.

Special note on missing data

If a dependent variable" field on a card is totally blank, BALANOVA 5

does not include the score in the analysis for the given dependent variable.
However other non-blank dependent variable fields on the same card will be
included in their respective analyses.

Do not confuse this deletion of missing data with an error comment by
BALANOVA 5 to the effect that there is no data cell A = 1, B = 2. This
comment means that no data card with A = 1, B = 2 had non-blank data for
the given dependent variable.

3-2 Data matrix examples

Class A design

In all the following examples, it is assiomed data is stored on
sequential file number 1 (SEQUENTIAL l)

.

Consider a two-way design with three subjects in each cell. For the
purpose of BALANOVA, subjects are also considered to be a factor, the
replication factor. Suppose that there are two dependent variables, and
further that the factor specification cards are listed in the order given
below, following the main program card.

BALANOVA (SEQUENTIAL 1
' (3) (2) (2l (3) (3)

•

(0)(0).

(i)(iMiU3^
(oUo).
END PROGRAM

Note that, contrary to the usual case, the replication is the second factor.
This illustrates one flexible feature of BALANOVA 5- A data matrix could be

1 1 1 20 19
1 2 1 8 8
1 3 1 k k
1 k 2 -3 6
1 5 2 k 10
1 6 2 2 3
1 7 3 k i+

1 8 3 6 2
1 9 3 8 h
2 10 1 2 7
2 11 1 -k 8

; vr4rais9&ea&.
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2 1? 1 25 2

2 13 2 126 15
2 11+ 2 2 20
2 15 2 3 3
2 16 3 U U

2 17 3 5 -1

2 18 3 3 2

Note that the first column is the A level, the third column is the C level
and the second column is the replication level, which in Class A designs can
be anything. The last two columns are the dependent variables. Each row
of the data matrix would be punched on one or more cards. A possible format
would be (3F5.0,3X,2F6.0).

The order of the rows is immaterial. They could be in any order and
have been written in a systematic order only for convenience.

Class B design - repeated measures

The data in Winer, Table 7-2-3 could be analyzed with the following pro-

gram, using three factors and one dependent variable.

BALANOVA( SEQUENTIAL 1) (3) UH^) (k) (3) .

(0)(0>.

(0)(0).

END PROGRAM

Data Card s:

1 1 1

1 2 1

1 3 1 5

1 h 1 3

1 1 2 3

1 2 2 1

1 3 2 5

1 h 2 k

etc.

2 1 5 5

2 2 5 h

2 3 5 6

2 k 5 6

2 1 6 7
2 2 6 5

2 3 6 8

2 k 6 9

Again, the rows could be any order. The subjects in the second level of facte

A could be assigned level numbers 1, 2, 3 or any other thre distinct numbers.

A possible format for this matrix is (2F5.0,f6.0,1X,F7.0) .

Another repeated measure design is Winer, Table 7 •^-3- Here we have

four factors and one dependent variable.
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BALMOVA( SEQUENTIAL l) (h) (l) (2) (2) (3) (U)

(oUo)-
(0)(0).

(1)(1U1)(2).
(0)(0).
END PROGRAM

Data Cards

:

1 1 1 1 18

1 1 1 2 lU
1 1 1 3 12
1 1 1 U 6

1 1 2 1 19
1 1 2 2 12
1 1 2 3 8

1 1 2 U k

etc.

1 2 6 1 18
1 2 6 2 10
1 2 6 3 5

1 2 6 k 1

2 1 7 1 16

2 1 7 2 10
2 1 7 3 8

2 1 7 k h

etc.

2 2 12 1 16

2 2 12 2 12
2 2 12 3 8

2 2 12 U 8

The assignment of levels to factors A, B, D (columns 1, 2, h) has to be as
shown above, but the subjects numbers can be changed provided that, for each
(A,B) cell, no two subjects have the same number. A possible format is

(2F5.0, DC,2F5.0,F12.0).

Class B design - hierarchical

able.

Consider the following design with three factors and one dependent vari-

BALANOVA(SEQUENTIALl) (3^ (1^2) (2) {k) .

(o)(o).

(0)(0)(1^.

(1)(1)(1)(2).
END PROGRAM

This is a hospitals (factor 2) within drugs (factor 1) design, illustrated
below, with unequal cell size.

:>yr<«Riafieie:'
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a CardIs

:

1 1 1 5-0
1 1 2 4.2
1 2 1 5.6
1 2 2 3.2
1 2 3 1+.6

2 1 1 5.3
2 1 2 8.2
2 1 3 U.3
2 1 k 6.3
2 2 1 5.7
2 2 2 6.8

Note that the hospitals are numbered 1, 2 in each level of factor 1 even though
there are four different hospitals involved^ This is necessary since factor 2
IS a non-replication factor - see the rules about Data Cards in Section 3.1.
There are 2 patients in hospital 1 for drug 1, 3 patients in hospital 2 for
drug 1, h patients in hospital 1 for drug 2 ajid 2 patients in hospital 2 for
drug 2. The patient numbering is flexible - it could be a different number
for every patient, regardless of hospital. A possible format is (3F5.0,F7.1)

.

Class C design

The exajnple in Winer, Table 4.3-1, could be set up as follows, with two factors
and one dependent variable.

BALANOVA( SEQUENTIAL 1) (2Ul) (5) (U)

.

(1)(0).

(0)(0).
END PROGRAM

a Cards:

1 1 30
1 3 16
2 1 14
2 2 18
2 3 io
2 k 22
1 2 28
3 1 24
3 2 20
3 3 18
3 k 30
h 1 38
1 h 34
h 2 34
h 3 20
k h 44
5 k 30
5 3 14

5 2 28
5 1 26
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The rows have been written in a non- systematic order to emphasis that,
without exception , in BALMOVA 5 the data rows can be in any order. A
possible format is (2F5.0,F10.0)

.

>>«£saaefla«teHh$!
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Chapter h. Program Details

k.l Method and program flow

The program follows the procedures in Scheffe (1959) > Chapter 8. Scheffe's
discussion will not be repeated here, but only a general description of the
program flow will be given. The names of the subroutines used are indicated
in case reference is made to the program listing. Many of the minor steps
and subroutines are not described.

1. Main Program

Calls subroutines and routes your data through the program.

2. Design input and check (INPUTP)

The Factor Specification Cards are read and checked for errors. Many
of the error conditions mentioned in Section U.3 are checked in INPUTD.

The design is transformed into the symbolic notation of live, dead and
absent subscripts as in Scheffe.

3. Derivation of all legal sources (LEGALS,NEWS)

All possible interactions are generated but only one interaction with
a given set of subscripts is retained. The procedure is identical to Scheffe,

p. 277, para. 1. The program now has a list of all legal sources (including

the original factors).

h. Expected mean squares (AUXIL^EMS)

The expected mean squares for each source are, of course, not computable
numbers, but rather symbolic expressions. (cf. last column, Table 8.2.2,

Scheffe). The progrsun generates and prints these expression in a form very
close to the normal printed form. The method is from Scheffe, pp. 28U-8.

5- Denominator for each source (FINDEN)

By the standard procedures, using the expected mean squares, the program
determines the correct denominator (if any) for each source.

6. Sorting of sources for summary table (SORT)

The sources are sorted in a convenient order, combining all sources
with the same denominator. This order is then used in printing the summary
table

.

7- Input of data (INPUTX)

The input data is read from the input device (the first parameter on the

main program card"! . The grand means for each dependent variable are computed,
ignoring missing (blank "i data.
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8. Storage of data for one dependent variable (READX)

This routine as well as all the remaining ones are executed in cycle
once for each dependent variable. READX stored the data in core and checks
that no data is missing in the design. The data is actually stored as

deviations from the grand mean. This is done to improve accuracy. See
Section k.2.

9- Check of replication numbers (CELLN)^

In the case of Class A and B designs, BALANOVA 5 checks whether the
call frequencies are equal, proportional or non-proportional.

10. Computation of sum of squares (SSEQU, SSPROP,XMEAN)

The marginal means and sums of squares for each legal source are
calculated.

11. Computation and printing of final summary table (FISHER, FPRINT)

These calculations are made in the standard way.

k.2 Some comments on accuracy of computation

An attempt was made in the design of this program to eliminate the
largest sources of computational inaccuracies that can occur in analysis of
variance calculations.

Consider a one-way analysis with the following data:

Group 1 Group 2 Group 3

Means

77

79
80
82
82

8 88
8 90
8 90
8 91
8 91

8.90

8.96

8.99
9.00
9.02

9.03

9.00

Sums of squares computations are generally made as the sums and
differences of two or more terms. In this example, the exact calculations
would be

SS between = II88.25OO - II88.I5OO
= 0.1000

SS within = 1188.255^ - II88.25OO
= 0.005^+

Note that these answers each have a string of zeros following the given digits
since they are exact. However on a computer, with about 8 digit accuracy, the
differences would only be accurate to about four decimals due to the cancellation
of all the higher order digits by subtraction.

>:'4B»»aH(:
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This is illustrated by a calculation using the previous analysis of
variance program in SOUPAC. SOUPAC ' s answers were:

SS between = O.IOOOO6IO

SS within - 0.0053863525

(5 significant digits)

(2 significant digits)

Note the large errors in these SS. Even worse errors can occur in other data.

The whole problem could be avoided by accumulating a true sum of square,

that is, by adding positive numbers to form each SS rather than taking a

difference of two large numbers. However this procedure was rejected because
it is extremely slow.

The following procedure is used in BALANOVA 5 ajid it is very effective.
The data are internally transformed to deviations from the grand mean . This
is why the grand means are computed in subroutine INPUTX before the deviations
are actually stored in the memory in subroutine READX. When the deviations
are used the individual terms which are added auid subtracted to give each
SS are now numbers of approximately the same size as the SS itself. This
means that the number of significant digits in the SS is large even if the
grand mean is large. In the example given above, the deviation scores are:

Group 1

13
11
10

08
08

Group 2

Means

.02

.00

.00

+ .01

+ .01

Group 3

+ .06

+ .09
+ .10

+ .12

+ .12

10 .00 + .10

and the SS are computed as

SS between = 0.10000000 - 0.00000000
= 0.10000000

SS within = O.IO5UOOOO - 0.10000000
= 0.005^+0000

The actual results produced by BALANOVA 5 were

SS between = 0.099999998 (8 significant digits)

SS within = 0.0053999992 (7 significant digits)

Note the great improvement in accuracy.

As a final feature of BALANOVA 5? the approximate n\miber of significant
digits in each SS is calculated and printed alongside each SS. These numbers
should not be interpreted exactly but only as a warning when they are small.

The approximate number of significant digits is calculated in the following waj
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(a) Find the largest term^ in absolute value, entering into the

calculation of the SS. In the example above, the largest
term in SS within is the first term (0.105^0000).

(b) Take the ratio of this largest term to the SS itself. In the

example, this ratio = 0.105^0000/0.005^0000.

(c) The approximate number of significant digits is then = 8.0-log-,Q

(ratio). In the example, this is 8.0-1. 38 = 6.62 which is

printed by BALANOVA 5 as 7^ a pretty good estimate.

Note that the number of significant digits printed by BALANOVA 5 reflects
the loss of accuracy in the computation of the SS from two or more terms.

It does not reflect loss of accuracy due to computation of the terms them-
selves.

^.3 Error conditions

BALANOVA 5 makes a detailed check to insure that the design is legal,
that none of the computer storage arrays are exceeded and that all the data
corresponds to cells within the specified design. The following general
types of errors are distinguished and corresponding error messages are
printed giving detailed instructions about how to correct the error.

1. One of the restrictions on program size has been exceeded. These
restrictions are:

(a^ maximum number of factors = 10

(b^ maximum number of legal sources = 100

(c) maximum size of X- storage array (used for data, means and
cell numbers) depends on region

(d) maximum number of dependent variables = 200

(e) maximum number of sigma- squared terms in any one expected
mean square = 10

2. The factor specification cards are incorrect or inconsistent.
This is, the design is illegal. The checks made are:

(a) all nested factors must be listed as a factor.

(b) no factor may be nested within itself.

(c) at most one factor can be the replication factor.
Furthermore, the replication factor must be nested
in at least one other factor and no factor can be
nested in the replication factor.
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(d) the factor type must be fixed or random.

(e) the maximum number of levels for each factor must be
more than one

.

(f) there must be at least one denominator term in the
analysis of variance summary table. If this is not
the case it is probably due to no factor being designated
as a random factor.

3. A Data Card has a level set which exceeds the limits stated in
the maximum number of levels on the Factor Specification Cards.

h. Once the data for a dependent variable has been read in, a
detailed check is made to insure that all cells in the design are filled.
If one cell is not, the calculation for that design is deleted and the
program moves on to the next dependent variable after printing sufficient
information for the user to locate the missing datum. An additional check
for Class B and C designs is made to insure that data for a given subscript]
set is not read in twice. If two data cards specify the same level set,

a comment is made to this effect and the calculations for the dependent
variable are deleted. Note that both the checks mentioned in this paragraph
are made independently for each dependent variable and are made after the
missing data (blank fields) for that dependent variable have been deleted.
Errors referred to in this paragraph are not fatal and the program proceeds
to the next dependent variable.

5. About one dozen other checks are made. They should always be
passed satisfactorily since the design is first checked as above. These
additional checks were inserted to assist in debugging the program and
if one of them fails it indicates a remaining error in the program. A
printed message is made to this effect in these cases.

k.k Program Checkout

BALANOVA 5 has been checked on a large number of designs. Among these,

the following calculations were reproduced by BALANOVA 5

:

1. Lindquist, p. 266, Class A.

2. VJiner, Table 7-8-3 (p- 376'>, both least-squares and unweighted
means, Class B.

k.^ Number of levels of the replication factor

The rules in Section 1.5 and Chapter 3 are strict in the sense that,
if they are followed, BALANOVA 5 will execute correctly. However the rules
may be relaxed or ignored in the case of the number of levels of the repli-
cation factor amd it is sometimes convenient to do so.

In Class A designs, any number of levels of the replication factor may
be punched on the Main Parameter Card provided the number is > 2. This
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is so "because in Class A designs only cell means are stored and the program

does not check the replication n\amber anyway. This rule relaxation is use-
ful when it is inconvenient for the user to calculate ahead of time how
many subjects are in each cell.

In Class B designs, any number of levels of the replication factor may
be punched on the Factor Specification Card provided

(a) the number is - the maximum number of replications in
any one nest , and

(b) the number is not so large that the restriction on the
size of the X matrix is exceeded.

Again this rule relaxation saves the user from having to know the maximum
number of replications before using BALANOVA 5^ provided he knows an upper
limit. The restriction on the size of the X matrix will not often be ex-
ceeded. However, the user has not been informed, in this manual, how to
estimate the size of the X matrix needed, since this limit is complicated to
specify.

k.6 Restrictions

1. No latin-squares designs may be run using Balanova 5.

2. No partially crossed designs may be run.

3. One and only one replication factor is allowed but one may use
random factors as needed to a maximum of 10 total factors.

h. Missing data may not cause a cell to disappear.

5. Factor levels on all but the replication factor must be
numbered 1 through the maximum, without skips.
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APPENDIX A-KEY TO DESIGNS IN WINER AND LINDQUIST

To facilitate the use of Balanova 5 in conjunction with Winer and
Lindquist, a large number of designs from these two books are listed below.
All designs previously described in Chapter 2 are also cross-referenced
below for convenience.

Winer, Chapter 3

See Section 2.1.1.

Winer, Chapter k, pp. 111-116

See Section 2.3

Winer, Chapter 3, pp. 18U-I8T

See Section 2.2.2.

Winer, Chapter 3, PP. I88-I89

Class A

Class C

Class B

Class B

The design on p. I88 is a hierarchical design and has program cards
(for n = 15)

:

BALANOVA ( C ) ( U ) (l ) (2 ) (2) (2) (15)

•

(0).

(o)(o)(i).

(0)(0)(1)(2).
(1)(1)(1)(2)(3).
END P

The design on the top of p. I89 is identical to the design on p. I86
(Table 5-12-1) except for relabelling of factors. See Section 2.2.2.

The design on the bottom of p. I89 is actually a repeated measures
design.

Winer, Chapter 6, pp. 233-238

See Section 2.1.2.

Winer, Chapter 6, pp. 2U1-2U1;

See Section 2.1.2.

Winer, Chapter 6, pp. 252-257

Class A

Class A

Class A

This is a 2 X 3 X 2 factorial design. Factor A is educational level
(fixed). Factor B is training method (fixed). Factor C is instructor.
Factor C may be consids3:^d to be either fixed or random. See the discussion
in Winer, p. 253. Depending on the final choice of type for Factor C, the
F ratios calculated by Balanova 5 will differ. Balanova 5 indicates what
denominator was used for each F ratio.
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BALANOVA (C) (U ) (l ) (2) (3) (2) (lO)

.

(0). FACTOR A

(0). FACTOR B

(1). FACTOR C

(1)(1)(1)(2)(3). FACTOR D

END P

Note the SOUPAC feature that program cards can he commented, thus the
names for factors used hy Balanova 5 are given as comments and are in agree-
ment with the notation used in the description ahove.

Winer, Chapter 6, pp. 283-28T Class A

Balanova 5 accepts designs vith all factors having two levels. Of course,
Balanova 5 uses its regular computational method rather than any special tech-
nique for these designs.

Winer, Chapter 6, pp. 287-288 Class A

The Wulff and Stolurow design and the Gordon design would hoth have
program cards similar to those in Section 2.1. Note that Gordon considered
that both main factors were random. Balanova 5 vould make the correct F tests,
i.e. the main effects are tested against the interaction mean square and the
interaction is tested against the within cell (subject) mean square. If
Winer's recommendation is followed, however, hoth of the factors should he
considered fixed.

Winer, Chapter 6, p. 289

See Section 2.3.

Winer, Chapter 6, pp. 289-291

Class C

Class C

The last three designs in this section of Winer are repeated measures
designs hut the subject factor is not nested in any factor and hence the
design must be a Class C design. The Bamford and Ritchie design has program
cards

:

BALANOVA (C ) (3 ) (l ) (3 )
(i+

) ( 9) •

(0).

(0).

(1).

END P

The pooling of the subject interactions would have to be done by hand.

The Geranthewohl et al and Jerison studies are very similar escept that
the subject interactions were not pooled.

Winer, Chapter 6, pp. 291-297 Class A

The special least squares computation for unequal cell frequencies de-
scribed in Winer cannot be performed by Balanova 5' The data may be input to
Balanova 5, however, and an unweighted means analysis will be performed. The
program cards are:
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BAMNOVA (C)(3)(1)(2)(U)(2T)
(0).

(0).

(1)(1)(1)(2).
END P

Note carefully, though, that Winer states that in this particular case the
cell frequencies are, in a real sense, an integral part of the design and
a least squares analysis is more appropriate than an unweighted means analysis.

Winer, Chapter 7

See Section 2.2.1.

Lindquist, Chapter 5, p. 1^+5

Class B

Class C

The teatments x levels design with one observation per cell is a
Class C design. Suppose there are U treatments and 10 levels. Then the
program cards are:

BALANOVA (C) (2) (l ) (U ) (lO)

.

(0).

(1).

END P

The levels factor must be random for there to be a test of the treatment
effect.

Lindquist, Chapter 5, pp- 131-152 Class A

Treatments x levels design (with more than one observation per cell)
are Class A designs with three factors, namely, treatments, levels and
subjects. Parenthetically, note that Lindquist 's "levels" refers to a factor
name and not to particular values of this factor, called "levels" throughout
this ^iTriteup.

The exercise on pp. 151-152 has the program cards:

BALANOVA (C ) (3 ) (D (2) (3 ) ( 5) •

(0).

(0).

(1)(1)(1)(2).
END P

The two main effects are test score, factor i and level of ability, factor 2.

Subjects (factor 3) are nested within these two factors and subjects is the
replication factor.

Note Lindquist's comment (p. lUl) that the levels factor is not a random
factor and hence the within cell mean square (MSj,__^^ ___^_) is the correct error
term for the test, ability and test x ability
calculations agree with Lindquist.

Subjects'
sources. Balanova 5's
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Lindquist, Chapter 6 Class C

The treatments x subjects design is analyzed in exactly the same way

as the treatments x levels deaign with one olDservation per cell as described

above (Lindquist, Chapter 5j ?• 1^5)

•

Lindquist , Chapter 7 Class B

The groups within treatments designs discussed in this chapter of
Lindquist are simply hierarchical designs like the hospitals within drugs
example in Section 2.2. The treatments are drugs and the groups are hospitals
See the program cards previously given in Section 2.2.

Lindquist suggests that in some cases, even of proportionality, it is

desirable to use the unweighted means analysis. This can be done by the
override provided by main parameter ik . Of course if the cell frequencies
are not proportional, the unweighted means will be performed anyway by Bala-
nova 5

•

Lindquist also suggests (p. l82) that the groups may be considered as
random samples from a population of groups , in which case the group factor
should be listed as of random type although the tests will not actually
change. Here is another case where the test is the same even though the in-

terpretation of the results will differ depending on what assumptions are
made

.

Lindquist, Chapter 8 Class A

BALANOVA (C ) (3 ) (l ) (^ ) ( 5) (lO)

.

(O). FACTOR A
(1). FACTOR B

(l)(l)(l)(2). FACTOR C

ENDP

These program cards would be fore the case of h treatments (Factor A) , 5

replications (Factor B) and at most 10 subjects in each treatment - replication
group. There are 5 x i+ = 20 groups in all. The tests that Lindquist suggests
are based on factor B being a random factor. These tests' are:

(a) test MS. against MS.^ (p. I91)
A Ad

(b) test MS.^ against MS^ (p. 197)
AB L

These tests would be automatically performed by Balanova 5*

To further comments should be made. Lindquist suggests, on the bottom
of p. 196, that unweighted means must be used for the test (a) above even
in the case of proportional designs. If this advice is followed the special
override in Balanova 5 must be used. See Main parameter lU . Secondly, the
pooled test suggested in the middle of p. 196 would have to be done by hand
after the analysis by Balanova 5 had been completed. See, however, Scheffe's
chapter on mixed models for a detailed discussion of these problems.
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Lindquist, Chapter 9 Class A

Chapter 9 contains a discussion of the general two-factor design of
which the treatments x levels design is Just a special case. The examples
are similar to those in Winer and will not be repeated. Note that Lindquist
p. 215, discusses the possibility that , in a design with factors A and B, if A
is random, MS is the correct denominator for testing factor B. This is, of

Ad
course, done by Balanova 5 if factor A is listed as of random type in the
program cards.

Lindquist, Chapter 10, pp. 226-228 Class A

See Section 2.1.2.

Lindquist, Chapter 10, pp. 230-237 Class A

This is a random replications of a two-factor design and the following
program cards:

BALANOVA (C ) (U ) (l ) (a) (b) (c ) (d)

.

(0) . FACTOR A
( ) . FACTOR B

(1). FACTOR C

(l)(l)(l)(2)(3). FACTOR D
END P

Note that both factors C

and C

and D are random. The number of levels for A, B

, b and c which would be integers in an actual example. The niimberare a
of levels for D (d in the above example) would be the maximum number of
replications in any one cell. The tests given in Lindquist will be carried
out by Balanova 5. That is, the interaction AB will be tested against MS
ABC, AC and BC will be tested against MS .^, . = MS^, A is tested against

, ^ . . ^ within D
MS and B against MS

BC

Lindquist, Chapter 10, pp. 237-238 Class C

The treatments x treatments x subjects design is a Class C design.
is identical to the Bamford and Ritchie design described above (Winer,
Chapter 6, pp. 289-291).

It

Lindquist, Chapter 10, pp. 238-2^3 Class A

The designs on these pages are similar to designs discussed previously.
Care must be taken to decide which factors, if any, are random. The computed
mean squares are not affected by this choice, but the choice of denominators
is

.

Lindquist, Chapter 13 Class B

Three of Lindquist 's designs. Types I, III and VI, are acceptable to
Balanova $ as Class B designs.
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Type I has program cards :

BALANOVA (C ) (3 ) (l ) (U ) (3) (lO)

.

(0).

(0).

(1)(1)(2).
END P

This table corresponds to the chart on the top of p. 268 vhere the maximum
of n , n , and n_ is 10.

Type III has program cards:

BALANOVA (C )
(i|

) (l ) (U ) (2) (3) (^O) .

(0). FACTOR A
(0). FACTOR B

(0). FACTOR C

(l)(l)(2)(3). FACTOR D
END P

This tahle corresponds to the chart on p. 282 where the maximum number of
replications in a BC cell is kO.

Type VI has program cards

:

BALANOVA (C)(It){l)(2)(3)(ii)(lO).

(0). A
(0). B

(0). C

(l)(l){3). D SUBJECTS
END P

This table corresponds to the chart on p. 292 where the maximum nimiber of
replications in any level of C is 10.
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APPENDIX B-QUICK REVIEW OF PARAMETER CARDS

BALMOVA 5

Parameter
Number

1

2

3

U-13

15

Subparameters

1

2

3-11

END PROGRAM is required,

Description

Input address. CARDS, SEQUENTIAL 1-15.

Number of factors.

Number of dependent variables.

Number of levels of factors.

1 if desire unweighted means.

1 to suppress means.

1 if random factor.

1 if is replication factor.

Factors in which this factor is nested,



CLASSIFICATION

I. General Description

The CLASSIFICATION program is designed to measure individuals against
previously determined groups in order to determine probable group member-
ship. The classification is done in a reduced test space derived from
discriminant analysis. The method of classification is based on the premise
that a group is totally described by its mean (or centroid) and dispersion;
the individual's relation to each group is determined by a y^ which indicates
how many members of the group are farther from the centroid than he and a

Bayesian probability of membership in the group based on this y^ . For each
individual, the x ^-^d probability for each group are given; the user then
applies a decision rule of his choice for assigning individuals to groups.

Since analysis is to be performed in a reduced space, the means and dis-
persion of each group must also be reduced to this space. The CLASSIFICATION
program performs these reductions.

The calculation of probabilities requires the specification of the number
of members in each group against which the individual is being compared.
They may be the numbers actually in the groups used for finding experimental
means and standard deviations or the number of individuals from the total
group being tested who are to be assigned to each group. These numbers are
specified along with the number of discriminant functions as an input vector.

In every case the input is expected in the form in which it is output by
the DISCRIMINANT AIJALYSIS program.

I. Formulas and Calculations

The following formulas are given in terms of matrix arithmetic except for
divisions among singletons. Dimensions i, j, k are respectively for variables,
functions and groups.

V (with dimensions i, j )

X (with dimensions k, i):

discriminant vegtors (input) for i variables
and j functions

group means for k groups (input)

C (with dimensions k, j ) = X • V: centroids in reduced space. Let C (vector
dimensioned j ) be C for one group.

The following are calculated for each group, k:

D (with dimensions i,i): dispersion matrix for group k (input)

D (with dimensions j,j) = V'-D-V; reduced dispersion matrix for group k

^-1
D (with dimensions j,j) inverse of reduced dispersion matrix for

group k

G (singleton): group sample size (input)

R (singleton) = G/determinant D: ratio for group k



IV.CLA,2

The following are calculated for each subject of raw data entered:

S (vector dimensioned i): row of data for a subject (input)

For each group k and each subject

where d = S
2 ^-1

X = d'D d

P^ = R -x2/2

V - c

where e is the base of the natural
logarithm

III

Then for the subject Pp ~ ? ^-i (^)

Probability of membership in group k: p(k) = P (k)/P

Parameters

The program name CLASSIFICATION is followed by these parameters on the
program call card:

Parameter
Number Description

Input Address of discriminant vectors, V. The

vectors are expected as columns. CARDS or
SEQUENTIAL 1-15-

Input Address of means, X. The means for a

given group are expected as a row. CARDS or

SEQUENTIAL 1-15-

Input Address of dispersion matrices, D. The

dispersion matrices are expected in a vertically
augmented form. CARDS or SEQUENTAL 1-15.

Input Address of individual scores, S. CARDS
or SEQUENTIAL 1-15-

Output Address for inverse of dispersion matrix.
PRINT or SEQUENTIAL 1-15-

2
Output Address for x and probabilities for each

subject. SEQUENTIAL 1-15 and/or PRINT. (Out-

put on SEQUENTIAL is in the form N. , X X

•il
. . .Y.m where

^il' m,

N. = sequential subject number in groups
X. . = j'th probabilities for i'*'^ subject
Y^"^. = j^h y2 for i'th subject)

Number of groups.

Number of variables.
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Parameter
Number Description

Input Address of number of discriminant functions,

and group sample sizes, G, as a single row. CARDS
or SEQUENTIAL 1-15-*

^ Output may be punched directly
and output

.

See SOUPAC Manual, section of input

* Must be a row vector (l observation) with the number of discriminant
functions as the first variable. The form output by DISCRIMINANT ANALYSIS
program may be used. If coming from CARDS, this data deck should be first,
followed by any other card decks in the order listed in the parameters.

IV. References

Cooley, William ¥. and Lohnes, Paul R. , Multivariate Procedures for the
Behavioral Sciences, Chapter 7» John Wiley & Sons, Inc., New York, I962.

^'••i' K





DISCRIMINANT ANALYSIS

I. GENERAL DESCRIPTION

Suppose that vre have k populations (groups) and p measures (variables)
on each member of each population. We want to test the hypothesis that our
groups are significantly different on the entire set of variables. This
one-way miiltivariate analysis of variance hypothesis is tested by this
program. The program then locates the dimensions (discriminant functions)
along which the group differences are maximum. Thus, we need some

function to transform the p variates into a smaller set of independent
measures which will indicate the differences between the groups. The
DISCRIMINANT ANALYSIS program finds the independent lirear fimctions of
the variables which maximally discriminate between " populations (groups
input). The results from this program, namely the criminant functions,
may be used in the CLASSIFICATION program to determi. . the probability that
any subject belongs in any group. Also, by looking at the coefficients of
the functions, we can determine to what extent each of the p variates
contributes to each ftmction. In order to do this we need to determine the
coefficients of the functions such that the ratio of variances between
groups to the variances within groups is maximized, i.e. the differences
between groups are to be large relative to the differences within groups.

II. CALCULATIONS AND FORMULAS

In matrix terms, we are trying to maximize the ratio

f. ' Af.
1 1

f . 'Wf

.

1 1

"f"Vi 1

where f . is the eigenvector associated with the i eigenvalue Xi of W A,

A = the covariance matrix between means.

a. . = E N (X. - X.) (X. - X.)
ij

-L
g ig 1 Jg

and W = the covariance matrix within classes,

w. . - E [ Z (X. - X. ) (X. - X. )]

^^ g=l n=l ^^ ^^ ^^" ^^

where k = number of groups, Ng.= number of subjects in group g, N = total
nimiber of subjects, and i and j rim from 1 to p, where p = number of
variables.

To find the maximum, we derive from the partial derivatives of that
ratio, the matrix equation

-1
(W A - XI ) F

where F is the matrix of eigenvectors. The eigenvectors are the coefficients
of the discriminant functions. The relative sizes of the eigenvalues
indicate the extent to which the associated discriminant functions distinguish
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among the groups. The percentage of the total discriminating power of
the variables contained in the j'^h discriminant function is represented by

100(
A
i )

.Z^ A.
1=1 1

(N should be the smaller
of k-1 and p)

In addition to obtaining the eigenvalues and discriminating coefficients,
the program will compute scaled vectors to show the relative contributions
of the variables to the discriminant function by

f. .' = (w^J
1/2

ij I

III. INPUT DATA

Input to the DISCRIMINANT ANALYSIS program consists of two or more
data groups. Each data group consists of a set of observations on two or
more variables. All of the groups must contain observations on the same
set of variables. The groups may be input as separate card decks (each
preceded by a DATA format card and followed by an END# card), as data
groups located on separate temporary storage areas, or as a mixture of
data groups on card decks and data decks on temporary storage areas. See
section of examples.

The discriminant functions can be computed either from raw data or
from W and T matrices, where each is a separate card deck or input file.
See Output section for description of W and T.

IV. SIGNIFICANCE TESTS

The measure of significance calculated in the DISCRIMINANT ANALYSIS
program is a Wilks ' lambda (likelihood ratio test statistic). This is a
test of the discriminating power of the test battery. It tests the hypoth-
esis that the population centroids (mean vectors) are equal for the k
groups. The Wilk's lambda is a function of the roots of W^A and is of
the following form:

A =.n,
1=1

1+A.

where r is the lesser of k-1 and p,
defined in the following manner

t

In matrix terms this criterion is

A=
W where |W| and |t|

determinants
are

W is the pooled within groups deviation score cross-products and T
is the total sample deviation cross products matrix. As |t| increases
relative to |w| the ratio decreases in value with an accompanying increase
in the confidence that the group centroids are not equal.



IV.DIS.3

An F ratio which yields an approximate test of the significance of
the Wilks' lambda is calculated and printed.

^ y ^ ^ 2r ^

where s = / , 2 2 T
^ , / 2 _^ 2 ^ v

(p q -4 )/(p + q -5 )

m=n- (p+q+ l)/2

X = -(pq - 2)/h

r = pq/2

q = k - 1

n = N - 1

N = total number of subjects

k = number of groups

p = number of variables

The degrees of freedom to be used with the F value printed in the output
are printed and are labeled Fl (degrees of freedom for the numerator)
and F2 (degrees of freedom for the denominator) and equal 2r and
mx + 2A , respectively.

V . OUTPUT

The output consists of the following:

1. Means of input variables for each group and group sample size

(Parameter Number 8)

2. A dispersion matrix, for each group. (Parameter Number 9)

3. The total sample deviation score cross-products matrix

N _ _
t. . = Z (X. - X. )(X. - X.)
ij ^^^ m 1 jn J

where i and j range over the variables. This matrix is the sum

of the A and ¥ matrix described in section I. This is the T matrix
referred to in Parameter Number 7. The diagonal of this matrix
contains the sums of squares. (Parameter Number 6)

h. The pooled within-groups deviation scores cross-products matrix which
is labeled W on the output. (Parameter Number 6)

5. The total number of subjects in all the groups combined. (Parameter
Number 6

)

6. The means and standard deviations of the variables across all
groups. (Parameter Number 6)

7. The correlation matrix of variables over all groups. (Parameter
NiJiiiber 6

)
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9.

10.

11.

12.

1
The among groups cross-products of deviations of group mean from grai

]

means weighted by group sizes. This matrix is labeled A matrix on
the output. (Parameter Number 6)

The eigenvalues for the W A matrix. (Printed)

The eigenvalues and percentage of variance explained by each
additional eigenvalue. (Printed on output, automatically)

The trace of the W A matrix. This is the sum of the eigenvalues.
(Printed on output, automatically)

The discriminant functions (fj^^). The number of discriminant
function will equal r where r is the lesser of the two values
k-1 and p, where k = the number of groups and p = number of
variables. (Parameter Number l)

r

13. The group means on the discriminant fimctions. This is a
k X r matrix formed by multiplying the group means on variables
and the discriminant functions. The matrix may be used to determine
the relative positions of the groups on the derived function.
(Parameter Number 11)

lU. The scaled vectors. These vectors are formed by multiplying the
discriminant functions by the square roots of the diagonal of

the W matrix described above. The scaled vectors show the
relative contributions of the input variables to each of the
discriminant functions. (Parameter Number 5)

15. The measures of significance described in Section IV. (Parameter
Nmnber 1+

)

VI . RESTRICTIONS

If raw data is input from cards, each group should be preceded by
a DATA card and concluded with an END# card in accordance with
SOUPAC conventions. If coming from seq_uentials data must be on

separate sequential files.

The number of subjects in a group must be greater than or equal
to the number of variables.

VII

3. The W matrix may not be singular, that is deviations from group
means may not be linearly dependent.

h. Variables may not be constant within a group.

PARAl^ffiTERS

The DISCRIMINANT ANALYSIS program follows the program name on the main
program card. Each parameter must be enclosed in parentheses. The param-
eters must appear in the order given below. If a parameter is not needed,
do not punch anything between its parentheses. All parentheses after the
last non-empty pair may be omitted.
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Parameter
Number

10

11

12

Description

$1 Output address of discriminant functions
(Matrix f.,). SEQUENTIAL 1-15 and/or PRINT.

^^ (Needed for CLASSIFICATION.)

Number of variables

Number of groups

1 if desire significance measures printed.

1 if desire scaled discriminant vectors printed.

1 if desire intermediate res\ilts printed.

1 if input is W and T matrices instead of raw data,

Output address of group means on original variable
and sample size (printed only).* SEQUENTIAL 1-15
and/or PRINT. (See Parameter 12) (Needed for
CLASSIFICATION).

Q, Output address of group dispersion matrices of
original variables.* SEQUENTIAL 1-15 and/or
PRINT. (Needed for CLASSIFICATION.)

N - total nijmber of subje.ts in all groups combined.
This parameter is left blank if raw data is in-
put rather than W and T matrices.

Q. Output address of group means on discriminant
functions. SEQUENTIAL 1-15 and/or PRINT.

Output address of group sample sizes, needed for
CLASSIFICATION.

* If W and T are input instead of raw data, group means and dispersion
matrices are not printed. Means and dispersion matrices on discriminant
functions are not computed in this case.

'^ It is possible to print in F format and/or punch the output from these
parameters. If you need either of these options, see the section in the
INTRODUCTION on INPUT and OUTPUT.

VIII. INPUT PROCEDURE

Input addresses of raw data groups or W and T matrices are listed on a

$INPUT card following the main parameter card. W precedes T in the sequence
when these are input. W and T may be output using a $OUTPUT card. Output
order is the same as input.

.»i^SBtSiS»:
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.i

If more rav data input groups are specified (parameter 3) than
addresses on the $INPUT card, the last address specified is reused as
many times as needed to provide that (parameter 3) numher of groups. This
is especially valuable if several decks of cards are input consecutively.

IX. SPECIAL COMMENTS

1. This program does not check for missing data. All "blank spaces
are read as zeros.

2. The user is cautioned against using the DISCRIMINANT AI^ALYSIS

program without an understanding of the statistical technique
used. See section of references.

3. Discriminant scores may be taken by matrix multiplication of raw
data X discriminant functions (pairameter l).

X

.

EXAMPLES

i

A B

/*ID

// EXEC SOUP

// SYSIN DD *

DIS(S1/P)(33)(M(1)( )( )(!)( )(

$INPUT(C)(C).
END SOUP
DATA(20)(lOX,5ElU.T)

(Data for W)

END#
DATA(20)(lOX,5Eli^.T)

(Data for T)

END#
/*

/*ID

// EXEC SOUP
//SYSIN DD *

MATRIX. DIS(S1/P)(33)(M(1)( )( )(l)( )( )(96).
M0V(C)(S5).
END P

DIS(S1/P)(U0)(U)(1)()()()(P)
$INP(C)(C)(S5)(C).
END SOUPAC
DATA(U0)(il0F2.0)

: (1st Data Deck)
END#
DATA(U0)(U0F2.0)

: (2nd Data Deck)
END#
DATA(U0)(U0F2. O)

(3rd Data Deck)
END#
DATA(ll0)(U0F2.0)

(Uth Data Deck)

END#
/*

In Example A, four groups of data are being input with the first two

groups coming from cards, the third from temporary storage on S5 and the
fourth from cards. Discriminant functions are stored on SI and printed
and group means are printed. Significance measures are calculated for hO

variables input. In example B, W and T matrices are input and much the
same results are obtained as for example A. Group means cannot be calcu-
lated.
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/*ID (accounting information )

// EXEC SOUPAC
//SYSIN DD ^

DIS(S1)(15)(2)()()()()(S2)(S3)()()(SU)
$INP(C)(C).
CLA(Sl) (S2)(S3)(C) (?)(?) (2)(15)(SU).
END S

DATA(15)( format )

(1st data deck)

END#
DATA(15)( format )

I (2nd data deck)

END#
DATA(15)( format )

(3rd data deck)

END#

This illustrates the use of the DISCRIMINANT and CLASSIFICATION programs.
The DISCRIMINANT program will save discriminant functions on SI; it will
operate on 15 variables for each of two groups. It will output group means
on S2 and group' dispersion matrices on S3 and store group sample sizes on Sh

.

CLASSIFICATION, in turn, will read discriminant functions, group means,
and group dispersion matrices from SI, S2, and S3 respectively. It will read
the group to be classified from cards and print inverse of dispersion matrices
and x^ and probability. It will expect two sets of group means and dispersion
matrices from 15 variables but 1 discriminant function (See Section V).
Original group sample sizes are read from S^^.

XI . REFERENCES

Bryan, J. F., The Generalized Discriminant Function: Mathematic Foundation
and Computational Routine. Harvard Educational Review , (1951 ) 21: 90-95

•

Cooley, W. W. and Lohnes, P. R., Multivariate Procedures for the Behavioral
Sciences . New York, Wiley, 1962.

Kendall, M. G., A Coiirse in Multivariate Analysis . New York, Hafner , I96I,
pp. 106-108.

References on Output:

Wilks ' Lambda - first formula, page 119 » Cooley and Lohnes.
F ratio - formula U.l, page 62, Cooley and Lohnes.





T-TEST

I. General Description

The T-TEST program calculates a T coefficient or F ratio as described
below:

Suboperation (l) : Paired T-Test (also called correlated T-Test).
Variables are in a row, variable ore is paired with variable two, three with
four, etc., smd a paired T coefficient is calculated for each pair as

follows

:

t = d/s

_ N
d = Z [X

i=l

.th
- X/>]/N. , where a and g are the j pair of variables

S_=N e" [X^ -^6^^ ^^ ^^0 - Xg])2/N 2.f]

d '^ i=l i=l '^

1/2

where f = degrees of freedom = N or N. -1 as desired and N is the sample

size for the j pair of variables.

Suboperation (2): Paired T-Test for all possible combinations of
variables computed as in Suboperation (l).

Suboperation (3) - Test of differences from a known population mean.
A population mean must be provided for each column of data or the
mean will be set to zero. Population means should be provided as a
row vector. The following are calculated and printed for each vari-
able:

t value: t = (X -y )/S_
X

where y = parameterized value or zero

Mean; X = E' X./N
i=l

^

NOTE

N ZX^ - (EX.
)^

Standard Deviation: S.D. =( )

N x(d.f. ).
'

1

N-1 is the usual degrees of freedom, but N may be specified.

S.D.
Standard Error of Mean: S_ =

X

Suboperation (4) : Test of differences_ from a known population mean for
previously analyzed data: the mean (X), standard deviation (S. D.), and
sample size (N) as well as the population mean [see suboperation (3)] are
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read in and the program computes the standard error of the mean and T
for each trio of the X, S.D., and N read in that order. If R trios of
data are used (R observations on rows occur) then R population means
should be given. Calculations are the same as in Suboperation (3)

•

NOTE: A column of data of Suboperation (3) is reduced to a three item
row here.

Suboperation (^) : Test of differences between two or more group means
taken pairwise: each group is located on a separate storage location
or set of cards. The following are calculated for one variable, two

groups

:

t value: t = (X. - X.)/S i and j are two groups
1 .1

' -

- N.

Mean: X. = Z, X.. /N.
1 k=l ik 1

Xi - x_^

for the variable over group i, Nj^ is

sample size of group i

Standard Deviation: (SD). = k=l ik R=l ik
^ N. X (d.f . ).

where (d. f . ) is N-j^ or -i—

Ni - 1

Pooled Estimate of Variance: S = [(SD) + (SD )]/(d.f.)
-'- J

where (d.f.) is N + N or N . + N . - 2 for N or N-1 respectively
i J 1 J

Estimate of Standard Error S- - =
x.-x.
1 J

'"s2(N^ + Nj)'

N. N,
_ 1 J —

.

I

Non-pooled Estimate of Standard Error:

S = [(S D )./(N.2- 1) + (S D )./(N.2- l)]^/2
n 11 JO

Suboperation (6) : One-way analysis of variance. The data to be compared

are located on different storage units or sets of cards. Calculations are

made as follows for each variable

:

S = number of storage units = number of subgroups

N. = niimber of observ

each i, j=l, ., Nj_

N. = niimber of observations in i subgroup, i=l, ., S, and for

X. . = element in the j^^ row of the i subgroup

N = 2 N. = total observations
i=l

^

S Nj_ S Ni 2
Total SS = Z 2^ Xnn - (^ E X^^) /N

i=l j=l
ij

i=l D=l
ij
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Ni
Betveen SS = .S r(.S^ X. J /N. ]- (.E, .E^ X..) /N

1=1 j=l ij 1 1=1 j=l ij

Within SS = Total SS - Between SS

Within D.F. = Total D.F. - Between D.F.

BSS
BDF

WSS
WDF

Suboperati,on (7): One way analysis of covariance. The experimental (depen-
dent) variable comes first followed by 1 or more covariates. The dependent
/ariable is adjusted to the set of covariates, not iteratively to one covariate
at a time. Subgroups or factor levels are handled as in analysis of variance,
Suboperation (6), i.e. as separate input decks or temporary storage locations.
Statistics obtained are means and standard deviations, test of homogeneity
of regression, F-ratio for covariance, and adjustment coefficients. For
further discussion see Winer, p. 578.ff.

c. =ExX - Z X Ex
"^ijk N ^ik jk \ -^ik Ny jk

k

y X.

\

A,

m-.

deviation crossproducts for all variables
X in group k (including experimental), X and

X are two variables, N is number of subjects,

I is summation over group
k

where c. ., is an element of C, , y is ex-
ijk k '^

perimental variable, x^ , . . .x are covariates
1 m

1 = I^\-K \' \'
= unpooled within group sum of squares

u'oup mean: X., = II X. for group k^ ik N, 1
k

/~c~-
—

Group standard deviation: s., = v i2:
^^ (d.f.),

. .
= 1 X.X. - ^ X. ^ X.

1,1 * 1 J M 1 N j

N

deviation cross products for all
X overall

y ^1 ^2

A'

m-.

where t. . is an element of T, y is
ij -" -^

experimental variable, x

variates

^,... ,x are co-
rn
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S^ = Z - A'd""'"A

= overall sura of squares

Overall standard deviation s. = / t

t.

11

(d.f.)

Correlation r. . = '^— Overall mean: X. =
1

^j " i [I ^ik ^jk - I hk I ^jk ]
- I ^ijk

K. K K

5=^i

W =

V

w

^2 ' • '

A'
w

m

w

S^ = Z - A 'D ^A
2 w w w V

= adjustment sum of squares (pooled)

Then

S3 = S2 - SI

SU = S5 - S2

where w^ . is an element of WJ
y is experimental variable

1' •x are covariates
m

L = N - (m+l)k where m = no. of covariates
k = no. of groups

= Z [N - (m+l)] c.f. Winer, p. 591 N = overall sample
Nj^ = sample size for group k

L = N - k - m

L = m (k-1)

Lu = k - 1

Homogeneity of Regression

Source Sum of Squares Degrees of Freedom Mean Square F Ratio

pooled within S3 L3 S3/L3 (S3/L3/si/Li:

unpooled within SI LI Sl/Ll

Analysis of Covariance

Source Adj . Sum of Squares Degrees of Freedom Adj Mean Sq. F Ratio

SS treatments Sk Lk SU/lU (Sl+/Li+ )/(J/!

residual S2 L2
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B = D A
V w

= adjustment coefficient for covariate

adj k
= h ^l f(^- - ^,J Bj i = 1,.m ik'

,m

= adjusted group mean for experimental variable

I. References

Bryant, E.G., Statistical Analysis . Egw York: McGraw-Hill, I96O

Snedecor , G.W. , Statistical Methods . Ames: Iowa State College Press, 195T.

Winer, B.J. , Statistical Principles in Experimental Design .

New York: McGraw-Hill, I962.

I . Restrictions

Suboperations (5)» (6), and (?)» tests of differences and analysis of
variance and covariance, require the data to be divided into 2 or more subgroups

!/. Parameters

T-TEST and ANALYSIS OF VARIANCE and COVARIANCE

Parameter
Number Description

Suboperations 1 - J, (See above.)

Number of subgroups (if applicable).

- Count blanks as zeros
1 - Count blanks as missing data

- use N-1 as degrees of freedom
1 - use N as degrees of freedom (See Special

Comments )

.

- pooled standard error in opt . 5

1 - non-pooled standard error (variances assumed
unequal )

.

V . Special Comments

All T-TEST input is provided through a $INPUT card. Input addresses of
subgroups for options 5, 6, and T are listed on a $INPUT card. (See section
on SOUPAC Input/Output ) . See examples for illustration. If options 1 or 2

are used, provide only 1 input address on a $INPUT card. For option 3, provide
two addresses, the first for the sample being tested, the second for the
criterion means. For option k provide two input addresses, the first for the
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means, standard deviations and sample size of the sample, the second for the
criterion means. No second address with options 3 and h means a zero criterion
mean is to be used.

If row vector of means is used this must be of length equal to number of
variables

.

Most work requires N-1 degrees of freedom,
missing data.

VI . Examples

1 . A Complete Program

/*ID [accounting information]
// EXEC SOUP
//SYSIN DD *

T-T (5)(3)(l).
$INP(C)(C)(C).
END S

DATA (10)(10F2.0)

[data cards for group l]

END#
DATA (10)(10F2.0)

Option 7 does not check for

[data cards for group 2]

END#
DATA (10)(10X,10F2.0)

[data cards for group 3]

END#

This is a complete SOUPAC program to do T-tests on ten variables and three

groups taken pairwise, i.e. 1 vs 2, 1 vs 3 and 2 vs 3, thus 30 T's will re-

sult, printed in 10 tables. Note that data decks are stacked one behind

another, each with its own DATA statement and END# card. A format appro-

priate to the data is given. The form of this is optional, but all groups

should have the same number of variables. A check for missing data, coded

blank or -0.0, will be made.
If the T-T card were replaced by T-T(6) (3) (l)

.
, an analysis of variance

would be performed yielding an F-ratio for each variable. Other cards could
remain the same.

2. Other examples T-T and corresponding $INPUT cards follow. Note that in-
put from S (sequential) units requires that data be stored there earlier in
the same run, or permanently stored in the system. Data decks will always
be called for in the order listed (unless otherwise specified).

T-T (l).

$INP(S1)
Paired T-Test on data stored on SI
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T.T (?)( )(1)(1)
$INP(S15).

T-T (3).
$INP(S1)(S3).

T-T (5)(2),
$INP(S1)(S2).

T-T (6)(U)(1).
$INP(S1)(C)(C)(S3)

Paired T-Test on data stored on S15 doing test on
all possible pairs checking for missing data and
using N degrees of freedom.

T-Test of population means on SI against criterion
means on S3.

T-Test of group mean of two groups , one on SI and
the other on S2.

One-way analysis of variance over four groups, one
on SI , two from cards , and one from S3 , checking
for missing data.
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BISERIAL CORRELATION

General Description

This program calculates the following coefficients for each com-

bination of one dichotomous and one continuous variable.

Case totals % cases in p = N_/N

^ cases in q = Nq/N

Total cases = N

Mean: Xp = 2Zp/Np

X = 2X/N

Standard deviation: Sp2 = ZZp2/Np - Xp^

Biserial r r =

: Z2C^/N - x2

(^p-^q) pq

S (.3989) h

where p = percentage of cases in category
q = percentage of cases in 1 category
h = height of the normal curve computed from normal tables

The program checks for missing data, and computes the above measures
only for those cases where both dichotomous and continuous variables are
present.

Type of Input

Data is read row-wise from either tape or cards. All dichotomous
variables must be first in each row. They should be coded with

and 1

Parameters

The program call card requires h parameters after the program name,
BISERAL R:
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Parameter
Number

1

2

3

h

5

Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15

.

Output Address of correlations. SEQUENTIAL 1-1^

and/or PRINT.

Number of dichotomous variables.

Number of continuous variables.

- treat blanks as missing data
1 - count blanks as zeros



CANONICAL ANALYSIS

I. General Description

The CANONICAL CORRELATION program provides a miiltivariate test of the
hypothesis that two sets of normally distributed variables are independent.
The larger set of variables (the predictor variables) is considered to have

q members, and the smaller set (criterion variables) has p memebers. This
program also linearly transforms each set of variables into a new set of in-
dependent variables, (or dimensions) such that the first nev predictor (a

linear combination of the original predictors) has maximum correlation with
the first new criterion variable. The second new predictor is maximally
correlated with the second new criterion, and so on (with the constraint
that each new variable is uncorrelated with the previous new variables de-
rived from the same set of original variables.

Let the criteria set consist of the £_ variables x , . .
.
,x and the pre-

X
,

. Assxame p - q. We
p+q

dictor of ^ other variates x
weighting matrices U ^ and

Clp

p+1'
then look for

W
ab

^a
=

E

8 U
a3 6

n = b ¥
:b\

Let1 that

a = 1, 2, •P

3 = 1, 2, •P

a = P+1, p+2 5 •

b = 1, 2, • P
P+q

The variables €, and t"i have the following properties:

1. They are standardized variables.

2. Within each set, the C's are independent and the ri's are independent, i.e.

within the set Ccx (as a runs from 1 through p) and within the set of ri

(as a runs from 1 through q) the correlations are zero.

3. The correlation between any ^ and any T] is zero except for p correlations
A , . . . , A .

1 p

The purpose of this program is to find the p correlations A ,...,X and the
weighting matrices U ^ and W , .

-^
^ a3 ab

Formulas and Calculations

The correlation matrix R is first partitioned into:

A

B

where A = correlation among predictors
B = correlation among criteria
C = correlation between predictors and criteria
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2

Standardized regression coefficients: 3 = A C

2 -1
Multiple R-squared: R = CA C = C3

The following equation is solved for A and U

1) (CA ^C -A^B)U = where A, B, and C are as above, X =

canonical r^, and U = criteria weight-
ine matrix

The solution is obtained by using the following derived forms:

2) (B - yl) h = where Y represents eigenvalues of B,

I is identity, and h represents
eigenvectors of B

3) [(HD ^^^)'(CA ^C')(HD ^^^) - A^l]v = where D is the diagonal matrix of
A, H is matrix of h vectors A^ repre-
sents eigenvalues of E and v repre-
sents eigenvectors of E, E = (HD"-'-/^)'

(CA-lC')(HD-l/2)

-1/2
U = HD ^ V where V is matrix of v vectors

B = HDH' needed only to prove equivalency of
1) with 2)-k).

-1/2
The Predictor weighting matrix: W = glTF where F is diagonal matrix

Wilks' Lambda: A. = .TT. (l - A.)

of A^, i.e. elements F'-^'^ are 1/A
on the diagonal and off.

for the j function

Chi-Square: )^, = 10£ (A.)(
J 2

- n) where n is sample size

III Input

Input to the CANONICAL ANALYSIS program consists of a correlation matrix .

These variables include a set of predictor variables and a set of criterion
variables. Either set may be first on the input data but there can be no mix-
ing of the two types of variables on the input data. The TRANSFORMATION program
may be used to reorder the variables if they are mixed on the card data deck.

IV. Significance Tests

Included in the printed output of the CANONICAL program is a Chi-square
value for each of the eigenvalues A computed in the program. The chi-square
values printed are determined from the Wilks' lambda values using the procedure
outlined by Bartlett (See Section X). The chi-square values provide a test of
the null hypothesis that the £ variates are unrelated to the q variates. If

there is at least one way in which a linear combination of the criterion variables



V.CAW.3

is correlated with a linear combination of the criterion variables this Chi-

square value will be significant. The second Chi-square may then be examined.

This Chi-square is a test of a second relationship after the first relation-

ship has been removed. If this Chi-square is significant a second linear
combination of the predictor variables is correlated with a second linear
combination of the criterion variables. This process continues until the
first non-significant Chi-square is found. All Chi-squares beyond that point

will be non-significant.

V. Output

The output consists of the following:

1. The matrix of standardized regression coefficients. This is the matrix of
coefficients which would be formed if the raw data used to calculate the
correlation matrix input had been converted to standard scores. The pre-
dictor variables are on the rows of the matrix and the criterion variables
are on the columns of the matrix.

2. A multiple correlation squared (R ) for each of the criterion variables.
The first r2 value is the multiple correlation of the first criterion
variable with the entire set of predictors variables. The second is for
the second criterion variable with the set of predictors, etc.

2
3. A set of eigenvalues X , correlations X, Wilks ' lambdas, Chi-squares, and

degrees of freedom. (See Section IV) (Printed)

h. A matrix of criterion weights (Parameter Number 3)

5. A matrix of predictor weights (Parameter Number h)

VI. Restrictions

A. Precalculated correlation matrices should be punched with sufficient
accuracy; accumulated round-off can cause malfunctions and errors in results.
Raw data and the CORRELATION program should be used whenever possible, or
maximum accuracy preserved in punching.

B. The matrices A and B must both be non-singular.

C. Number of criteria (p) must be less than or equal to the number of
predictors (q).

II. Parameters

The parameters for the CANONICAL ANALYSIS program follow the program
mnemonic CAN on the main program card. Each parameter must be enclosed in
parentheses. The parameters must appear in the order given below. If a param-
eter is not needed, do not punch anything between its parentheses. All paren-
theses after the last non-empty pair may be omitted.



V .CM . h

Parameter
Niimber

8

9

10

Description

Input Address (correlation matrix). CARDS or
SEQUENTIAL 1-5-

Sample size of rav data needed for Chi-square.
May be zero or blank if unknown.

^ Output Address of criterion weighting matrix.
SEQUENTIAL 1-5 and/or PRINT.

Q, Output Address of predictor weighting matrix.
SEQUENTIAL 1-5 and/or PRINT.

Number of predictor variables.

Number of criterion variables. (Must be less
than or equal to number of predictors).

Order of variable sets on input

:

1 if predictors are first
2 if criteria are first

1 if want regression coefficients printed

2
1 if want multiple correlation squared (R )

printed

Output Address of eigenvalues. Print is not

valid.

fi It is possible to print in F format and/or punch the output from these
parameters. If you need either of these options, see the section in the
Introduction on Input and Output.

VIII. Special Comments

This program does not check for missing data. All blank spaces are read
as zeros.

IX. Examples

B

/*ID [accounting information]
// EXEC SOUP
//SYSIN DD *

CANONICAL (CARDS) (50)
(PRINT) (PRINT) (15) ( 5) (1)(1)(1).
ENDS
DATA(20)(8F10.T)

punched correlations

END#
/*

/*ID [accounting information]

// EXEC SOUP
//SYSIN DD *

C0R(C)(P)(S1/P) .

CAN(S1)(50)(P)(P)(15)(5)(1)(1)(1)
ENDS
DATA(20)(20FU.0)

raw data

END#
/*
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Examples A and B illustrate the use of the program card for Canonical

correlations. In these examples the input data consists of 15 predictor and

5 criterion variables and will be a card deck.

In exajnple A the card deck is a punched correlation matrix; note that a

possible format is 8 values to a card with 10 digits each. The format will
be reused until 20 values are found per row. Thus the deck will be contained
on 60 cards. The Canonical correlations program reads these cards.

In Example B the card deck is raw data, the format could be any string
adequate to read the data. The data deck is read by the correlation program,
which produces correlations and stores them on sequential 1 which Canonical
reads

.

The same calculations will be performed by each Canonical program (ex-

amples A and B). Fifteen variables are predictors and these are the first 15
in each row. The sample size of 50 was provided in order to get all signifi-
cance tests. The printed output will be the canonical correlations, the
criterion weighting matrix, the predictor weighting matrix, and significance
tests.

References

For a discussion of the uses of canonical analysis, see Kendall, M.G.
,

A Course in Multivariate Analysis , New York, Hafner , I96I, pp. 68-85 or
Kendall, M.G., The Advanced Theory of Statistics , New York, Hafner, 1951,
Vol. II, pp. 3I18-358.

For the derivation of the method used, see Anderson, T.W., An Introduction
to Multivariate Statistics , New York, Wiley, I958, pp. 288-296.

For significance test procedure, see Cooley, W.W. and Lohnes , P.R.,
Multivariate Procedures for the Behavioral Sciences , New York, Wiley, 19^2,
p. 37.

For details on the solution of eigenvalue matrices, see Johnston, J.,
Econometric Methods , New York, McGraw-Hill, I963 , pp. 95-103.
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CORRELATION

I. General Description

The main purpose of the CORRELATION program is the calc\ilation of
Pearson product-moment correlations (hereafter referred to as correlations
in this writeup) . A correlation measures the linear dependency between
two variables, and this program calculates a correlation for each pair
of input variables. The square of a correlation, sometimes called the
coefficient of determination, represents the proportional reduction in

variance of one variable due to a linear relationship with another. Thus
the coefficient of determination measures the strength of a linear relation-
ship, or the proportion of variance accounted for by a linear rule.

The CORRELATION program automatically produces other types of
correlation coefficients, because the calcTolations reqiiired are identical.
Thus point biserial coefficients of correlation (often preferred to
biserial correlation), phi coefficients (alternative to tetrachoric
coefficients), and Spearman's rank order correlations can be readily
obtained. Thus, if the input consists of dichotomous variables, the
output will contain a mixture of phi's, point biserials, and ordinary
correlations. (A point biserial correlation is a correlation between
a dichotomous variable and a continuous variable). If the input to
the correlation program consists of rank ordered data (ordinal), the
output will be Spearman's rank order correlations. (See Walker and Lev,
Chapter 11 for comparisons and comments on the above mentioned coefficients).

In the process of calculating the correlations, the means and standard

deviations of the individual variables are computed, as are the cross-

products and covariances between variables. After the correlations have
been calculated, they are used to calculate the linear regression coefficients
and corresponding intercept terms needed for predicting each variable from

each other variable.

II. Input

Input to the CORRELATION program consists of a set of independent
observations on two or more variables. The data is considered as a

two-dimensional array (or matrix) of numbers with each column containing
the observations on one variable, and each row consisting of one obser-
vation on each variable. If we use the letter X to represent the matrix
of raw data, we let Xj_i represent the i"*^^ row (where i = 1, 2, ... N) and
the ^'^^ column (where j = 1, 2, . . . M) . In other words, we have N obser-
vations (rows) and M variables (columns) in our data matrix X.

III. Formulas and Calculations

The following formulas define certain statistics and illustrate their
methods of calculating within the program. The subscript i refers to
observations (or individuals) and runs from 1 to N. The subscripts j and
k refer to variables, and they run from 1 to M.
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N

10

Mean = X. =
i=l

(of variable j)
N

Covariance*
(between variables

j and k)

= C
jk

N
Z (X. . -X.)(X.- -X. )

i=l ^J J ik k'

N^l

N N N
N ZX. .X., - ( ZX. .)( ZX.

10 Ik \._T 10
'

i-1 i=l ^ i=l

N(N -1)

ik

Standard Deviation* =: S . =

(of variable j) "^

N - 2
Z(X..-X.)^

i=l "J J

N- 1

N N

N ZXf. - ( ZX. .)

i=l^J i=l"^
N(N -1) OJ

Correlation
(between variables

J and k)

= R
jk - S.S^

N N N
N ZX. .X., - ( ZX. .)( ZX., )

. T
ij ik \

T
ij ' \ ^ ik'

1=1 ^ 1=1 ^ 1=1

N
N

2
N / N~ N ;

ZX. .
-

( ZX. .) / N ZXf, - ( ZX., )'

. , ij • n ij v/ .-,1k \ T ik
1=1 '^ 1=1 ^ V 1=1 1=1

From the equation X. . = B. X. + A. , the program calculates
ij Jk iK jk

Linear Regression Coefficient = B., = R., (^)
(for predicting variable j from variable k) k

Intercept
(constant term in equation for
predicting variable j from variable k)

= A., = X. - B.,X-
jk J jklc

*NOTE: the sample covariances and sample standard deviations are unbiased
estimates of the corresponding population parameters. The definitions
given here follow the practice of many current statisticians. [See Anderson

(1958) - Chapter 3 for example.]

IV. Significance Tests

If we assume that two variables (indexed by j and k) have a bivariate
normal distribution, there is a test statistic for testing the hypothesis
that the correlation in the population is zero (or equivalently that either
regression coefficient is zero). Even for a relatively small sample size

(N), this hypothesis can be tested using the t ratio:

t =
R., -Jn- 2
Jk

4
1 -R

jk
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with N - 2 degrees of freedom. Other types of hypotheses can be tested
through use of the Fisher R to Z transformation. [See Hays (1963)^ pages

529 - 533 for example.

]

V. Output

Output from the CORRELATION program may consist of any or all of
the statistics from section III above, by using parameters 2 through 7-

Any output from this program may be printed and/or output to temporary
storage (SEQUENTIAL 1-5). The means, standard deviations, and the sample

size (n) are output as a matrix with M rows (one for each variable) and

three columns (the third column will have a constant value of N for all
variables). Correlations, covariances, and cross-products are printed
as lower triangular matrices, while the regression coefficients and
intercepts are printed as square matrices. However, all five of these
matrices are stored as square matrices.

VI. Restrictions

The CORRELATION program will accept an unlimited number of
observations, but the number of variables is limited as noted in the
section on PROGRAM LIMTS in the INTRODUCTION.

VII. Parameters

The parameters for the CORRELATION program follow the program
name on the main program card. Each parameter must be enclosed in
parentheses. The parameters must appear in the order given below.
If a parameter is not needed, do not punch anything between its
parentheses. All parentheses after the last non-empty pair may be
omitted.

Parameter
Number Use or Meaning

Input Address of raw data (X matrix).
CARDS or SEQUENTIAL I-15.,

Output Address for means, standard
deviations, and sample size.

SEQUENTIAL 1-15 and/or PRINT.

Q Output Address for correlation matrix
(r). SEQUENTIAL 1-15 and/or PRINT.

Q Output Address for cross-products
matrix. SEQUENTIAL 1-15 and/or PRINT.

Q Output Address for covariance matrix (c)

.

SEQUENTIAL 1-15 and/or PRINT.

fi Output Address for matrix of regression
coefficients (B) . SEQUENTIAL 1-15 and/or
PRINT.
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7 n Output Address for intercepts (matrix A).

SEQUENTIAL 1-5 and/or PRINT.

8 1 if last variable in each row is a

weighting factor.

n - It is possible to print in F format axid/or punch the output from these

parameters. If you need either of these options, see the section in

the INTRODUCTION on INPUT and OUTPUT.

VIII. Special Comments

1. This program does not check for missing data. All blank spaces
are read as zeroes. If you have missing data, use the ^GSSING
DATA CORRELATION program.

2. In the output matrices of regression coefficients and intercepts,
the row number refers to the dependent variables, and the column
numbers refer to the independent variables.

3. If a variable is constant, an error message will be printed and
all correlations with that variable will be set to zero.

h. In order to have the program perform its calculations separately
for sub samples of the data, see the section on CONTROL VARIABLES
in the INTRODUCTION.

IX. Examples

lA

/^ITi <accounting information>

// EXEC SOUP

//SOUP.SYSIN DD *

CORRELATIONS (CARDS) ( ) (PRINT)

.

END SOUPAC

DATA (6)(6f2.0)

IB

/*ID <accounting information>

// EXEC SOUP

//SYSIN DD *

COR (C)( )(P).

ENDS

DATA (6)(6F2.0)

END#

h
Example lA illustrates the usage of the CORRELATION program. Notice

that all words are spelled out although this is lonnecessary. Notice also

that correlations are to be printed out, although the means and standard
deviations are not. Example IB will perform exactly the same computations

as lA, except that all instructions have been abbreviated to make keypunch]?

easier.
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/•><-ID <accounting information>

// EXEC SOUP

//SYSIN DD *

COR (C^(P)(P/S1).

PRINCIPAL AXIS FROM (Sl) TO (S2/P) WITH (lO) FACTORS AND

(100) PERCENT OF THE VARIANCE TO BE REMOVED.

VARIMAK ROTATION FROM (S2) TO (PRINT).

ENDS

DATA (20)(lOFi+.0,5F6.2/lOX,5FU.l)

END#

In the second example, the CORRELATION program first prints the means
and standard deviations. Then it prints the CORRELATION matrix and stores
it on SEQUENTIAL 1 (Sl). The PRINCIPAL AXIS program then performs a

principal components analysis and outputs 10 components to S2. VARIMAX
then rotates these 10 components, using the VARIMAX criterion, and prints
the results.

X. References

T. W. Anderson, An Introduction to Multivariate Statistical Analysis ;

John Wiley and Sons, Inc. , 1958.

E. C. Bryant, Statistical Analysis; McGraw-Hill, I96O, pp. 113-135

.

W. L. Hays, Statistics for Psychologists; Holt, Rinehart and Winston,
i960.

H. M. Walker and J. Lev, Statistical Inference ; Henry Holt and Company
New York, I96O.





II.

MISSING DATA CORRELATION

General Description

The MISSING DATA CORRELATION program calculates the following coeffi-

cients for every combination of variables:

TNa

Mean ^i
=

Standard Deviation
xij

-]

Covariance
M,.L(XY„) - (lX,.)(rYij)

IJ

"id ("ir^:

Correlation : r

.

^id
ij - Sx..Sy,.

Restrictions

The maximum number of variables for this program is 100.

The input data to this program may come from any source conforming to
SOUPAC. Output may be printed and the correlation matrix may be placed on

any source conforming to SOUPAC.

III. Parameters

The parameters for the MISSING DATA CORRELATION program appear on the
program card. They must follow the program name in the following order:

Parameter
Number Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15-

Default is CARDS.

- printing as usual
1 - printing is suppressed

Output Address of correlation matrix.

Output Address for sample sizes.

Coding for missing data; if left blank or if
zero is entered, minus zero is used as check.
It is NOT possible for this program to count
true zeroes as missing data. This parameter
must be enclosed in asterisks. Example: *99*«

NOTE: All output is in double precision.

seaotAiKi
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IV. Special Comments

A. The user is warned against further processing of the correlations
output by this program because the correlations do not necessarily
come from the same sample

.

For control breaks, data must be presorted on the control variables
with the last variable changing fastest. The maximum number of contra
variables is 30 Control variables begin on a new card with $C-B in el

1 and are enclosed in parentheses.

C . The correlation matrices can be stored in parameter 3 is a temporary
storage address. However, if control breaks are also being used,
only the first matrix corresponding to the first control break can be

saved

.



MULTIPLE CORRELATION

I . General Description

The MULTIPLE CORRELATION program calculates the following coefficients
where n = sample size n

m = sum of weights [ m = I w. ]

i=l ^

p = number of independent variables (Parameter 2)

S = vector of standard deviations
X = independent variable means
Y = dependent variables means

n
I X.

Mean: X. =
J

i=l
ij

Raw Data Cross-Products : X'X = Z (x. .x )

1 J IK

Covariance: c

X'X

jk (n-1)

i=l

(2x.) (Zx.)
J ^

n(n-l)

Standard Deviation: s. = / c . .

3 3 3

'jk

Product Moment Correlation:
jk s.s

J k

The correlation matrix is then partitioned as follows

B

B'

where A is the independent variables correlation matrix. C is the dependent
variables correlation matrix. And B and B' are the cross-correlation matrix,

Standardized Regression Coefficients} 3 = A B

n-1
Deviation Covariance Matrix: D = S ( C -B ' 3 )

S

'

[n-p-1]

.»«:^6Ssiso«-
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This leaves the following matrix:

-1

Dpvlfl.tinn (Partial) florrpl a.ti on Matriyr D = D., / (D D )

1/2

1

Regression Covariance Matrix : RC = SB'SS' [ ]

P

1/2
Multiple Correlation : R. = (B'6).

J J

R.

F Ratio: F. -^
, =

, ^ 2
J n-p-1 1-R

.

J

n-p-1
[

]

Q n 1 "1 / ^
Standard Error of Estimate: S = s.[(l-R. )

—^^ ]
e J J n-p-1
J

Unstandardized Regression Coefficient : b . , = —^ 6
,1 . K S,_J.K s^ j.k

Dependent Variable Intercept : b v~-"-v" ^ ^-v^-O.K K ._, J«-k J

Standard Error of Unstandardized Regression Coefficient : s^. ^ = S [(X'X). "^]

bj .k e^^ jj

Standard Error of Standardized Regression Coefficients :

\
J .k J J .k

^J.k
T = Regression Coefficient/Standard Error : T , = —'^-^

—

J -k Sq

Predicted Dependent Variables : y * =b ,+ Z b.x.
k o .k ^^ J .k J
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Deviations from Observed: ^j-^j

n

I (z.

,. ^. T, ^ ^ ^^. . ^ 1 . i=2 '^i-1
Durbm-Watson Coefficient: d. =

' ' j n

2 iz. y
i=l "^i

For reference to formulas and interpretations see:

E. C. Bryant, Statistical Analysis, New York, McGraw-Hill, I96O, pp. 198-22^1.

II . Restrictions

^50 variables, U30 Dependent and Independent variables. (See Parameter 2)

The input data to this program may come from any source conforming to
SOUPAC , Ouput will be printed and/or stored as indicated.

Ill . Parameters

The parameters for the MULTIPLE CORRELATION program appear on the
program call card. (Most problems require only parameters 1, 2, 5j and Tj
see example 1.) They must follow the program name in this order:

Parameter
Number Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15,
(See Special Comments for order of variables.)

Number of independent variables.
Ind. var . + dep. var . + wt . var . + control var . < U50,

Ind. var. + dep. var. < ^30.

Output address of predicted dependent variables.
SEQUENTIAL 1-15 and/or PRINT.

Output address of deviations from actual.
SEQUENTIAL 1-15 and/or PRINT.

Output address of Means and Standard Deviations.
SEQUENTIAL 1-15 and/or PRINT.
1st column contains Means.
2nd column contains Standard Deviations.
3rd column contains Sum of Weights.
i|th column contains Sample Size.

:sgii6Mi2SK«^.
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Parameter
Number Use or Meaning

Output address of coefficients (unstandardized)

.

SEQUENTIAL 1-15, PRINT is default. Coefficients
for M independent and N dependent variables are
written as N rows with N + M + 1 columns each.
The i^^ row contains in order the i"^^ intercept
term, the M coefficients for the i^^ dependent
variable, a -1 in the M + i + 1 location, and
O's for all other locations. This format is

compatible with the ECONOMETRICS REDUCED FROM
AND RESIDUAL ANALYSIS program.

Q, Output address of correlation matrix. SEQUENTIAL
1-15 and/or PRINT.

^ Output address of raw data cross-products matrix.
SEQUENTIAL 1-15 and/or PRINT.

Q Output address for covariance matrix.
SEQUENTIAL 1-15 and/or PRINT.

10

11

fi Output address of deviation covariance matrix.
SEQUENTIAL 1-15 and/or PRINT.

^ Output address of deviation (partial) correlation
matrix. SEQUENTIAL 1-15 and/or PRINT.

12 ^ Output address for regression covariance matrix,
SEQUENTIAL 1-15 and/or PRINT.

13

14

Output address of Durbin-Watson and second, third
and fourth powers of sums of deviations.
SEQUENTIAL 1-15 and/or PRINT.
Row 1 Durbin-Watson Coefficients.
Row 2 Z(y-y*)2
Row 3 Z(y-y*)3
Row h l{y-y*r

fi Output address of inverse of au^

variables cross-products matrix,
and/or PRINT.

lented independent
^ SEQUENTIAL 1-15

15 If weighting factors are desired, code this paramter

1 or -1 (see footnote 3). The weights must be in each

row and must be to the right of the dependent variable

(see Special Comments below). Weights should indicate

a replication of an observation. Leave this parameter

blank or code a zero if weights are not wanted.



Parameter
Numter
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Use or Meaning

16 Tolerance used, to determine if correlation matrix
is singular. If this parameter is left blank, a

tolerance of 10 ~5 will be used. If any other
tolerance is desired, it should be punched as follows:
*_.£-_* where the blanks could be filled, in as

follows: *13.5E-10*. This parameter must be enclosed
in asterisks as shown in the examples.

IV. Special Comments

Sample Size, Regression Coefficients, Standard. Errors^ F Ratio, Multiple
Correlations, T Ratio, and Dependent Variables Intercept are printed by default.

Thirty control variables will be allowed and are specified by normal con-
ventions but these variables must be to the right of the dependent variables
and weights. Control variables will not be in the calculations. If control
breaks are used only the first set of output can be stored on Sequential address.
(Control variables must be pre-sorted either in SOUPSORT or by Machine).

Independent variables must be on the left, then dependent variables, weights,
(if any), and control variables (if any).

If the independent variable or the only dependent variable is constant a

message will be printed and the sample will be discarded after computing the
correlation matrix.

The index "O" on printed matrices refers to the intercept term.

Examples
(1)

/*ID

// EXEC SOUP
//SYSIN DD *

MUL(C)(5)()()(P )()(P)
ENDS
DATA(T) (7F1.0)

END#
/*

This program reads from cards, uses 5 independent variables and 2 dependent
variables. Means, Standard Deviations, Correlations, and default options are
printed.

'/•£/Mamwo!a9L
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(2) /*ID

// EXEC SOUP
//SYSIN DD *

TRA(C).
PER(l) (1,15) (20, 22) (16, IT) (19) (18) (23).
0UT(S1)(1,23)

.

PER(l) (1,15) (20, 22) (16, IT) (19) (18) (23).
ENDP
MUL(Sl)(l8)()(P)()()()(P)()()()()(P)(P)(l)*1.0E-8*.
$C-B (22) (23).
ENDS
DATA (23)(23F2.0)

END#
/*

This program reads from Sequential 1, uses l8 independent varieties,
2 dependent variables, weights, and control variables. Ouput are deviations,
cross products, Durbin-Watson coefficients, sums of the second, third, and
fourth powers of deviations, inverse of augmented independent variable
cross products matrix and default options are printed.

VI. Footnotes

Durbin-Watson Coefficients are a measure of autocorrelation with a

distribution between and h.

2
If weights are not used column 3 (sum of weights) is equal to the

sample size (n) .

If weights (Parameter 15) are used two options are available. (l) Code
Parameter 15 a -1 if the sum of weights (m) should be substituted for sample
size in all calculations (warning—this may show a higher significance than
is warranted from the data). (2) Code Parameter 15 a 1 if the sum of weights
should be substituted only as follows:

Mean : X .
=

J

n
Z

1=1
w. X . .

1 ij

m

Covariance: c

h

jk

X'X

(n-1

( Zwx . ) ( Zwx )

m (n-1)

The dependent variable portion of the raw data cross-products matrix is

deleted leaving the independent variable portion ZX. ZX . and n is then
augmented.
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n '-\

^^1
X'X

w

MD A
-1

such that for j=l, p and k=l , p

-1

JiL
jk ns.s,

J k

(Sx Z)
J

1 - {lx^)Y

W -

(from inversion by partitioning)

VII. Coefficients of Linear Dependency :

If the correlation matrix is singular a message will be printed as follows

INPUT MATRIX IS SINGULAR.
THE FOLLOWING ROWS ARE LINEARLY DEPENDENT:

12 N-1 N

Following this message the coefficients will be printed as follows:

COEFFICIENTS OF LINEAR DEPENDENCY

N

1 xxxx.xxxxx
2 XXXX . XXXXX

N-1 XXXX.XXXXX

The values are the unstandardized regression coefficients of variable N

predicted by variables 1 through N-1. Those values which are approximately
equal to zero are not part of the dependency.





PAETIAL CORRELATION

uoneral Description

This routine, upon option, provides two of the more common types of

special purpose correlation coefficients.

A, Partial Correlations:

This program produces coefficients of net correlation of any order
frotii 1 to 19 in matrix form. Coefficients of successively higher
order may be obtained by repeated calls to the program, each time
using as input the previously generated partial correlation matrix;
or several variables may be held constant at the same time by one

call to the program.

The general eauation used is:

^ _ ij .abc. .
.
(n-1

- r

.

in.abd. .
.
(n-1) * ij .abc. .

.
(n-1

iJ .abc. . .n ^"
• K^ i ^\

)^/"' (1 - r

.

m. abd. . . (n-1) jn.abc i;^
References

:

B.

Mills, F.C. Statistical Methods , Holt, Rinehart and Winston,
New York, 1955- 3rd edition.

Tetrachoric Correlations:

Tliis type of correlation coefficient is used when continuous normally
distributed variables are measured dichotomously.

This program ir; based on a program by Roald Buhler at Princeton
University which in turn is based on a 65O program written at the
Educational Testing Service. The approximation used was developed
by Professor Ledyard Tucker.

Re strictions

A. Partial Correlations:

Input matrices may be no larr;er than lUO x lUO and must be compatible
with SOUPAC conventions. In m.ost cases the original input to the
program will be a matrix of zero order correlations (see CORRELATION
program write-up") .

B. Tetrachoric Correlations:

This option is limited to l40 variables. All observations should be
coded either or 1. The program generates cross-count tables before
computing the correlation coefficients.

4>iVXSK
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n Parameters

The program name, PAETIAI. CORRELATION, should be followed by the

following parameters:

Parameter
Number

2

3

1+ - 22

Use or Meaning

Input address of R if partial correlations or raw-

data if tetrachoric correlations. (R is a

correlation matrix).

Output Address of correlations desired.

if tetrachoric correlations are desired

1 if partial correlations are desirrd

Variables to be held constant in using
partiaJ. correlations.

IV. Special Comments

When there is a zero cell or sufficiently close so that the

tetrachoric correlation cannot be computed by this approximation, a

value of -1.0 is used if the missing cell is off-diagonal. If a

diagonal cell is zeroish (i.e., if a variable is all zero or all one)

its correlations are set to 0.0.

Blanks are counted as zeroes.

\ , Examples

A series of observations of 8 variables are used to obtain },rd

^rder partial correlations with variables 5. 1, and 8 held constant:

/*ID

// EXEC SOUPAC
//SYSIN DD *

CORRELATIONS (CARDS) () (SEQ l) .

PARTIAL CORRELATION (SEQ 1) (PRINTMD (5) (7) (8^ .

end soupac
data(8)(8f6,2)

END #

•ifHSajos.'iv.x-;



REGRESSION-CORRELATION PROGRAM

I. Purpose

The purpose of this program is to run correlation and regression
analysis. This program replaces the previous stand-alone programs
Correlation, Canonical, Multiple Correlation, Step-Wise Multiple Correla-
tion and Partial Correlation.

This program, through the use of the VARIABLE subparameter card, can
be used to process subsets of the original input variables.

II. General Description

A. Correlation Section

w = weights n
m = sum of weights [m = .Z v.]

n = sample size (if Main Parameter ? < 0, n = m)
x-j_j = raw data; jth variable; i'th observation
B = vector of Standard Deviation
X = means

n

Mean X. =
J

• S, X..
1=1 1,1 [if weights specified, X. =

.Z^ w.x . .

1=1 1 1,1

Cross -Products: X'X = Z (x x )

[

1=1 ij ik

X'X ^^^^^(^\)
Covariance

;

'jk n-1 n(n-lT

[if weights: .Z^ (w.x..x., ) ]1=1 1 ij ik

if weights (Main Parameter T > O)

X'X
(Zwx

. ) (Zwx )

A. k
jk (n-1) m(n-l)

Standard Deviation: s. = / c . .

J JJ

Correlation: r
jk

.ik

/~c

'Jj kk

B. Simple Linear Regression

To solve the equation X, = A + B X
k Jk jk j

Regression Coefficients
S.

B., = r., -J-
Jk jk S^

Intercept : A
jk

X, - B. X.
k Jk J

•iQ'i'VJKO^SlSK
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C. Partial Correlations

p = niim"ber of variables to be partialed out

q = total number of variables

The correlation matrix is partitioned as follows:

P
p+1

P r+1

A B

B' C

P., = C - B'C'^B

ik

J J kk

So output is of the form 1 P P+1
1

p
°"-^

+1

q

r

Canonical Correlations

The correlation matrix is partitioned as follows

p = number of predictor variables

q = total number of variables

1

P
p+1

P P+1

Standardized regression coefficients: ^ = A B

R-Squared : R^ =B'A^^B

Eigenvalues of C = D

Canonical Matrix

Eigenvectors of C = H

(hd"^/^)'b'a"^b (hd"^/^)

Eigenvalues-Canonical R'" = a" = Eigenvalues of Canonical Matrix

Canonical R-Correlation : A (a diagonal matrix)
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Wilk 's Lambda: A. = .11, (l-A^. )

Chi-Square : Y-^ = log (^•) (^ - n)^
^J ^e J 2

th
(for the j function)

Eigenvectors of Canonical Matrix: V

Criteria Weights : W = (HD ' )V

Predictor Weights: W = BW A
Si p (-;

-1

E. Multiple Correlation

p = number of independent variables
q = total number of variables

The correlation matrix is partitioned as follows:

P
p+1

p
A

p+1

B

B' C

-1,
Regression Coefficients (Standardized) : 3 = A B

Deviation Covariance: D = S(C-B'b)S' r- (unexplained variances)
* n-p-1

1/2
Deviation (Partial) Correlations: D., = D.,/(D..D, , ,

jk jk jj kk
(Correlations among dependent variables with the independent var . partialled out)

Regression Covariance : C = SB ' gS ' ^— (explained variances)

Multiple Correlation : R. = (B'3).
J J

P

1/2

F Ratio: F
J n-p-1

i"'j_
p

Testing Hypothesis R = 0.

Standard Error of Estimate: Se. = s.[(l-R. )
—

1

J J J n-p-1

s .

Regression Coefficients (Unstandardized ) : b. ,
= —^ 6. ,— j.k s^ ^j.k

Dependent Variable Intercept: b ,
= Y, - .Z^ b. , X—^' *^— o . k k j=l J.k",
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Standard Error of Regression Coefficients (Unstandardized) :

Standard Error of Regression Coefficients (Standardized) :

T = Regression Coefficient/Standard Error : T = -^^ Testing Hypothesi:
'

%.K 8 = 0-.

P
Predicted Dependent Variables; y*=ti +Zb x

'

^
"^k o.k j=l j.kj

Deviations from Observed: z. = y.-y.*
J J J

n , .2
y (z

.

- z . )

Durbin-Watson Statistic: d. =
J n

F. Stepwise Multiple Regression

In the step-wise procedure, intermediate results are used to give valuable
statistical information at each step in the calculation. These intermediate
answers are also used to control the method of calculation. A number of inter-
mediate regression equations are obtained by adding one variable at a time
thus giving the following intermediate equations:

Y = B + B X11 where Y is the dependent variable

Y = E, Vi^ B^X^, etc

The coefficients for each of these interTnediate equations and the relia-
bility of each coefficient are obtained by the step-wise procedure. The
coefficients represent the best values when the eq^uation is fitted by the
variables included in the equation. The variable is added that makes the
greatest improvement in "goodness of fit" or, stated another way, gives the
greated reduction in variance of the dependent variable.

A variable may be indicated to be significant at an early stage and enter
the regression equation. After several other variables are added to the
regression equation, a variable in the equation may be indicated to be in-
significant. Under this situaton the step-wise regression procedure will
remove the insignificant variable before adding an additional variable. Thus,
at the various steps in the regression procedure, only those variables which
are significant will be included in the regression equation.
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The F level to enter a variable controls when variables enter the
equation and the F level to remove a variable likewise controls the re-
moving of variables from the equation.

After the first step of regression subsequent coefficient and error
terms depend on those which have gone before in an iterative manner.

For example, the standardized regression coefficients result from a

partial inversion of the correlations matrix (replacing the correlations
with the dependent variable). The diagonal elements of this inverse axe
also used. The multiple correlation in turn comes from the regression co-
efficients. As the iteration procedes with each step of regression new
coefficients result.

Standardized regression coefficients: B . j = l,...,p where p is the number
J

Unstandardized regression coefficient

Multiple correlation: R = / 1 JY J

of independent var in the regression

i. =3. * Tr~ Y is the dependent var.
J 1 S

r is correlation of variable j

with dependent variable

Intercept: a = Y - ZB.X.
J J

Standard error of mean of Y: Se- = S^ / 1/(N-1)

Standard error of predicted Y: Se" = SY / (l-R^^^ )/N-k-l ) Y is predicted Y

Standard error of estimate: Se ^ = SY /(l-R^) (N-1 ) /N-k-1est

= Se- / N-1

Standard error of unstandardized coefficient: Se = (Se;^/S.) /dT
D. is diagonal element of partially j
J inverted correlation

Standard error of standardized coefficient: Se^ = Se * ^
J J Y

B,

T ratio: T = A.
Se.

Degrees of freedom: Df = N-p-1

'he above are printed by default at the end of each iteration.

. . '.'.''y^jy ' ' • yi
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III Parameters

A. Main Parameter Card

REG

1

10

11

12

Mnemonic

Input Address of raw data (default), Augmented
Cross Products, Covariance or Correlations
Matrices (see notes on Type of Input).

Output Address of Means, Standard Deviation,
Sample Size, Sum of Weights (stored in h rows).

Output Address of Correlations (if subparameters
are specified, the correlation matrix must "be

saved on a sequential file).

Output Address of Covariance Matrix.

Output Address of Raw Data Cross Products
Matrix.

Input Address of labels.

Weights (1, 0, -1; Default O)

TYPE of Inputs
(see notes on
types of input)

Raw Data (default)
1 Cross Products
2 Covariance
3 Correlation
U Correlation

for all
inversions

Search for Pivotal Elements
or Default - no search

1 Perform search over entire matrix

Test for Positive Definiteness
or Default - perform test

1 Ignore test

Tolerance (Default *1.0E-5*), must be
enclosed in asterisks, "* *".

Output Address of Augmented Correlation matrix
suitable for input (print not allowed,
correj.ation matrix must have been saved on a

sequential file).

B. Subparameter Card

1 . CONTROL (mnemonic : CON)

CON (must be first subparameter card? if used)

1-20 Control Variables
(Control Variables must be eliminated for any
further analysis. Only the first subset is

output to a sequential file.)
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2. VARIABLE (mnemonic: VAR

)

Purpose: To specify a subset and order of variables to be used

in all following subparameter cards until another VAR

card is encountered.

The absence of any VAR cards or a VAR card without parameters

indicates that all the input variables are to be used in their

original order.

The parameters always refer to the order of variables originally

entered.

Form: Index sets (see below).

Examples:

1. VAR(1)(2)(?.)(5)(T).
Variables 1, 2, 3, 5, and 7 are used (5 variables).

2. VAR(1,2)(3,T).
Variables 1 through 2 and 3 through 7 are used (7 variables).

3. VAR(1,2)(3,7,2).
Variables 1 through 2 and 3 through 7 in steps of 2 (3, 5,

and 7) are used (5 variables).

Caution: If a variable is specified more than once, the sub-

parameter cardc will use the variable more than once. This may

cause singular matrices in MUL or CAN.

3. SIMPLE LINEAR REGRESSION (Mnemonic: SIM)

1 fi Output Address of Coefficients (E).

2 Q Output Address of Intercepts (A).

h, PARTIAL CORRELATIONS (Mnemonic: PAR)

The first N variables are partialled out. The variables may
be reordered by use of a VAR card. The correlations with
those variables which are partialled out are set to 0, the
diagonal of the matrix is set to 1.

1 Number of variables to be partialled out

.

2 Q. Output Address of Partial Correlation Matrix.

5. MULTIPLE LINEAR REGRESSION (Mnemonic: MUL)

1 Number of independent variables.
Ind . var , + dep . var . + wt . var . +

control var. < U50.

Ind. var. + dep. var. < ^30.
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Output Address of coefficients (unstandardized )

.

SEQUENTIAL 1-15, PRINT is default. Coefficients
for P independent and L dependent variables are
vrritten as L rows with L + P + 1 columns each.

The i^" row contains in order the i ^ intercept
term, the P coefficients for the i''^^ dependent
variable, a -1 in the P + i + 1 location, and
O's for all other locations. This format is

compatible with the ECONOMETRICS REDUCED FORM
AND RESIDUAL ANALYSIS program.

Output address of inverse of augmented independent
variables cross-products matrix. SEQUENTIAL
1-15 and/or PRINT.

fi

Output Address of predicted dependent
variables. SEQUENTIAL 1-15 and/or
PRINT (also P(F) is optional).

Output address of deviations from
actual. SEQUENTIAL 1-15 and/or
PRINT (also P(F) is optional).

Raw data
must be
stored on
a sequen-
tial file,

Output Address of Durbin-Watson and second,
third and fourth powers of sums of deviations.
SEQUENTIAL 1-15 and/or PRINT.

Row 1 Durbin-Watson Coefficients.
Row 2 S(y-y*)2
Row 3 Z(y-y*)3.

Row 14 Z(y-y*)^

Q Output Address of deviation covariance matrix.
SEQUENTIAL 1-15 and/or PRINT.

Output Address of deviation (partial correlation
matrix. SEQUENTIAL 1-15 and/or PRINT.

Output Address for regression covariance matrix
SEQUENTIAL 1-15 and/or PRINT.

6. CANONICAL CORRELATIONS (Mnemoic: CAN)

The predictor variables must precede the criteria variables.
Reordering may be done by use of a VAR card.

;l Number of predictors (must be greater than the
number of criteria).

fi

fi

Output Address of Predictor Weighting Matrix

Output Address of Criteria Weighting Matrix.

Output Address of Standardized Regression
Coefficients (Print only).

Output Address of R (Print only).
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6 Q. Output Address of Standardized Predictor
Weighting Matrix.*

7 9. Output Address of Standardized Criteria
Weighting Matrix*.

8 Output Address of Eigenvalues (Sequentials
only) as a row.

* Weighting matrices are standardized so
that the sum of the square for each function
(column) is equal to 1.

7. STEPWISE MULTIPLE REGRESSION

Only one dependent variable is allowed. It must be the rightmost variable.

1 "F" level to enter an independent variable into

the regression equation. An example would be: *U.O*

2 "F" level to remove a variable from the regression
equation. An example would be: *U.O*.

3 1 if constant term in equation is assumed to equal
zero (O). [if this option is used the raw data
cross-products matrix must be saved on a Sequential
file.

]

h Output Address of coefficients (Sequential file,
only)

.

5 Output Address of predicted dependent variables
(Print only). Input may not come from cards.

First (N) variables are placed in regression first.

First (N) variables are to be kept in the regression
once they are entered.

1 if intermediate steps of regression are not to be
printed.

!. FlKpl.'ination

A. Type of Input (Main Parameter 8)

RAW DATA is input

''SWt'^nfiiKiAMnAiF.
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TYPE

1 An augmented Cross Products Matrix is input
The form is as follows:

EX

zx

X'X

An augmented Covariance Matrix is input
form is as follows:

The

ZX

EX

Sk
(covariance)

An augmented Correlation Matrix is input
form is as follows:

The

'Std. dev. ) S

X (means)
K

r., (correlations)

This option may be used to input a previously-

calculated matrix (Correlation, Covariance,
or Cross-Products) for use as input to a sub-

operation.

B. Weights (Main Parameter 7)

If the Weights Flag is / and raw data is input, then the
weighting variable must be the rightmost variable.

If the Weights Flag is > then the input matrices of type
1, 2, or 3 should be augmented as follows:

TYPE

EX

FORM

n EX

EX X'X

m —
EX

C., (covariance'
Jk
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n \

=j •jk

m

If the Weights Flag is < then the sum of weights should be
substituted for n.

C. Miscellaneous

1. If suboperations are requested, the Correlation matrix must be
output to a Sequential file. Be sure not to use this file as an
output address for any subparameter cards.

2. All output is in the form of a matrix permuted in order of the
variable specified on a VAR card.

3. All printed matrices are given variable n^umbers determined upon
entry at the main input address.

k. If Predicted dependent variables and /or deviation from predicted
values in MULTIPLE Regression are printed, the use of labels will
Increase the number of lines printed by 20^ to 25^.

i'T'J'vV'''
^:t;.::;;^
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Examples

A. Labels

The label deck must precede any data input to this program by cards. Up
to 8 characters may be used to label each variable, therefore the format field
may be up to 8 columns in vldth. The labels should be left Justified within
each field.

REG(C)()(S1)()()(C)

ENDP
ENDS
data(t)(Ta8)
one two three
END#

DATA(T)(TF2.0)

END#

B. VARIABLE Card

FOUR FIVE SIX SEVEN

MULTIPLE CORRELATIONS

To run Multiple Correlation on the following equations:

n S-\' \h ' SS
X^ = bQ ^ V2 "W ' SS " V6

REG(C)(P)(S1/P).
VAR(1)(3)(5).

VAR(2,6,2)(5)(1).
MUL(U) #2
ENDP

CANONICAL Correlations

a. To permute the predictor and criteria variables.

REG(C)()(S1).
VAR(7,li+)(l,6).

CAN(8)(P)(P)(P)(P).
ENDP

b. To use different subsets of nredictor or criteria variables,

Z b.X. = Z b.X.
i

1 X .JO #1 i = 7, 8, 9, li+; j = 1, 2, 3

#2 i = 7, 8, 9, 10, 11; j = 1, 2, U, 5, 6
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REG(C)()(S1).
VAR(T,9)(1^)(1,3).
CAN(i|)(P)(P)(P)(P).

VAR(7,11)(1,2)(U,6).
CAN(5)(P)(P)(P)(P).
ENDP

n

tf2

3. PARTIAL Correlations

To specify the order of variables where the first n variables will be
partiailed out.

#1
ij.T89

'ij.l5T8 (assume 10 variables)

REG(C)()(S1).
VAR(T,9)(1,6)(10).
PAR(3)(P).
VAR(l,5,i+)(7,8)(2,U)(6)(9,10).
PAR(U)(P).
ENDP

C. Input Types

1. Augmented Cross Products

MAT.

GEN*S2*1*.
M0V(C)(S1). RAW pATA
EXP(S2)(S1)(S3).
H0R(S3)(S1)(S2).
TRA(S2)(S3).
MUL(S3)(S2)(S1).
ENDP
REG(S1)(P)(S2/P)()()()()(1)

ENDP
ENDS

TyPE=l

2. Augmented Correlation

REG(C)()(S1)()()()()()()()()(S2).
ENDP

REG(S2)()(S1)()()()()(3).

TYPE=3

ENDP
ENDS

3. Unaugmented Correlation TYPE=U

C0R(C)()(S1).
REG(S1)()(S2)()()()()(1|).

ENDP

\^0^'>3tS66«IC
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D. CONTROL Card

The CONTROL Card is similar in use to a $C-B card with the CORRLEATIONS
program. The following forms are equivalent.

REG(C)(P)(S1/P).
CON(5)(9)(ll).
ENDP

C0R(C)(P)(S1/P).
$C-B(5)(9)(ll).

E. Equivalent Forms

This section indicates the form needed to replace current stand-alone
programs with the Regression Program.

The superscripts indicate like uses of the parameters between the two
forms

.

1. Correlations

a. C0R(C)(P)(P)(P)(P)(P)(P).

REG(C)(P)(S1/P)(P)(P).

SIM (P)(P).
ENDP

h. C0R(C)(P)(P).

REG(C)(P)(P).
ENDP

2. Multiple Correlations

a. MUL(Sl)(6)(P)(p)(?)(p)(p)(P)(P)(r)(p5(p5(F](P).

REG(S1)(P)(S2/P)(P)(P).
2 6 1'4 3 < 13101112

MUL(6)(P)(P)(P)(P)(p)(p5(p5(p1.
ENDP

b. MUL(C)(5)()()(P)h(P)

REG(C)(P)(S1/P).

MUL(5).
ENDP

3- Canonical Correlations

a. C0R(C)( )(S1).

CM(S1)(50)(P)(P)(8)(6)(1)(1)(1)
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REG(C)()(S1).

CM(8)(P)(P)(P)(P).
ENDP

b. CAN(C)()(P)(P)(8)(6)(1)(1)(1)

REG(C)()(S1)()()()()(M.

CAN(8)(P)(P)(P)(P).
ENDP

U. Partial Correlations
1

a. COR(C)( )(S1).

PAR(S1)(P)(1)(1)(2)(3).

1

REG(C)()(S1).
2

PAR(3)(P).
ENDP

b. PAR(C)(P)(1)(1)(2)(3).

REG(C)()(S1)()()()()(1+).
2

PAR(3)(P).
ENDP

Addendum; The following additional subpara^eter card is available.

TRANSFORMATIONS (Mnemonic: R-T)

address' °^, f^^f^^"^f i°-^ °f the correlation matrix is output to a specified

dlstributJ w t'^^'^
^"""^"^ correlations will be approximately normally

"SiS::?; iT^lJllTJl/iZT". ^' ^""-^
' '' ^- -™- --edition

n-2 de1r::;Tf^Se:dom!'^''°^^
""''' '^^' ''' ^^^^^^^^ t-distribution with

Output address of fisher Z transformations

Output address of T-transformations

.

isiaisaioiiA:





STEP-WISE MULTIPLE CORRELATION

It General Description

The STEP-WISE MUT.,TIPLE CORRELATION program calculates the follov/ing basic
statistics before the step-wise procedure begins. All variables are included.

Mean : X-;
N

Crossproducts : P.. = Z(X.X.)c ij 1 J

NS(X.X.) - (Z?C.)(ZX.

Covariance: S,
_. = ^

^n
'

(N-1)
~ ~

ij

Standard Deviation: S- = (s. .

1 ^ 11
,1/2

All summation is over the
sample.

Product Moment Correlation: r.
ij

10 s^s.

In the step-wise procedure, intermediate results are used to give

valuable statistical information at each step in the calculation. These
intermediate answers are also used to control the method of calculation.
A number of intermediate regression equations are obtained by adding one

variable at a time thus giving the following intermediate equations.

a. Y = Bq + B^ Xj^ where Y is the dependent variable.

b. Y = Bg + B2_X2 + B2X2 , etc.

The coefficients for each of these intermediate equations and the
reliability of each coefficient are obtained by the step-wise procedure.
The values and reliability may vary with each subsequent equation. The
coefficients represent the best values when the equation is fitted by the
variables included in the equation. The variable is added that makes the

greatest improvement in "goodness of fit" or, stated another way, gives the
greatest redaction in variance of the dependent variable.

A variable may be indicated to be significant at an early stage and
enter the regression equation. After several other variables are added to
the regression equation, a variable in the equation may be indicated to be
insignificant. Under this situation the step-wise regression procedure will
remove the insignificant variable before adding an additional variable.
Thus, at the various steps in the regression procedure, only those variables
which are significant will be included in the regression equation.

The F level to enter a variable controls when variables enter the
equation and the F level to remove a variable likcv/isc controls Lho removing
of variables from the equation.

The last step in the step-wise procedure predicts the value of the
dependent variable for each set of observations based on the final re-
gression equation. Deviation between the actual and predicted values are
also calculated.

(See parameter h)

.
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TI . Calculations and Formulas

After the simple correlations and the first step of regression sub-
sequent coefficients and error terms depend on those which have gone
before in an iterative manner.

For example, the standardized regression coefficients result from a

partial invei'sion of the correlations matrix (replacing the correlations
with the dependent variable). The diagonal elements of this inverse are
also used. The multiple correlation in turn comes from the regression
coefficients. As the iteration precedes with each step of regression
new coefficients result.

Standardized regression coefficients: 3. i = l,...,k where k isthe no.
' of indep. var in the regression

Unstandardized regression coefficient: B. =3- o
1 1 S

Y is the depen-
dent variable

Multiple correlation: R =\ .2, r* . B.
y 1=1 lY 1

r. is correlation of
lY

variable i with dep. var,

Intercept: C = Y - X3.X.11

Standard error of mean of Y: Se^ = S^/ l/(N-l) N is sample size

Standard error of predicted Y: Se^ = S^/ (l-R'^)/N-k-l) i^ predicted Y
Y ^

Standard error of estimate: Se ^ = S,/ (l-R-- ) (N-1 )/N-k-l

)

est Y

= Se^ / N-1

Standard error of unstandardized coefficient: Sc^ = (Se/v/Si)/ Di

i ^
Di is diagonal element of
partially inverted correlation matrix

S.

Standard error of standardized coefficient: Se^ = Se^ F~
^ ^i ^Y

T ratio: T =
3.
1

Se
Degrees of freedom: Df = N-k-1

6.
1

lil. References

A. Ralston and H. S. Wilf, Mathematical Methods for Digital Computers ,

New York, Wiley and Sons, 19^0, pp. 191-195.
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IV. Restrictions

The dependent variable must be after all the independent variables in

each row. Only one dependent variable is allowed per program call.

The input data to this program may come from any source conforming to

SOUPAC. Output may be PRINT only except for coefficients (see parameters).

V. Output

The following is normally printed: Crossproducts, Means and Standard
Deviations, Covariance, Correlations, Standard Error of Mean of Dependent
Variable. Plus for each step of regression: F level, Standard Ei-ror of Pre-
dicted Dependent Variable, Multiple Correlation, Standard Error of Estimate,
Dependent Variable Intercept, Degrees of Freedom for F. And, for each Inde-
pendent Variable in the step: Unstandardized Regression Coefficient,
Standard Error of Unstandardized Regression Coefficient, Standardized Re-
gression Coefficient, Standard Error of Standardized Regression Coefficient,
T, Degrees of Freedom for T. All printing may be suppressed except the
final step of regression.

The coefficients which may be requested on temporary storage are un-
standardized. The output row consists of the intercept, the coefficients,
and a minus 1. Any independent variable not entered into regression will get
a zero coefficient output.

VI. Parameters

The parameters for the STEP-WISE MULTIPLE CORRELATION program appear on
the program call card. They must follow the program name in this order:

Parameter
Number Descriptions

Input Address. CARDS or SEQUENTIAL 1-15-

(see parameter h for special conditions.)

"F" level to enter independent variable into
the regression equation. An example would be:
«l+.0*

"F" level to remove a variable from the re-
gression equation. An example would be: *I|-.0*,

This parameter should be set to 1 if the pre-
dicted dependent variables are to be
calculated. (if this option is needed, input
data must not be from card.) or blank if
not wanted.

1 if constant term in equation is assumed to

equal zero ( O)

.

1 if want to use weighting factor. (if a

weighting factor is used, it must be the last

variable in the input data row.)
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Parameter
Number Description

1 if intermediate steps of regression
are not to be printed.

1 if do not want cross-product matrix
printed; 2 if input data is in the
following form

:

10

11

12

13

lU

15

1 N N+1

M

CORRELATIOI!
E

A

i;

MATRIX

N
s

STAiroARD .Sample

N+1
DEVIATION size

(where N is the number of variables

1 if do not want means and standard
deviations printed

1 if do not want covariance to be printed

1 if do not want correlations to be
printed.

Tolerance to be used to determine when
singularities are assumed to occur. If

this parameter is left blank 10~5 is used.
If it is desired to change this parameter,
the following would be used: *1.E-10*
where any number could be substituted for

the 10.

Output (intermediate storage) of coefficients

First (N) variables are placed in regression
first.

First (N) variables are kept in regression,
if entered.

VII . Special Comments

The dependent variable must be the last variable in the input row
(unless a weighting factor is used, then the dependent variable will be
the next to the last variable in the input row.

)
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FIT
(CHI-SQUARE GOODNESS-OF-FIT TEST

^

I. General Description

In statistical applications, it is frequently the case that certain

assumptions were made concerning the probability distribution of a random

variable. A frequent assiomption is that a particular variable is normally
distributed. The question that arises is "how valid an assumption was

this?" A method of testing this assumption (or hypothesis) is the CHI-

SQUARE GOODNESS-OF-FIT TEST.

This program provides tests of hypothesis that user's data is

(l) a random sample from the distribution P0, where is a user specified
parameter, or (2) a random sample from a class, P0, of distributions where

is not specified. These will be called tests of type 1 and type 2 ,

respectively.

Distributions which can currently be tested in the program are the
binomial, Poisson, normal, gamma and continuous rectangular distributions.
The user may, for example, wish to test the hypothesis that his data was
from a normal distribution with variance 1, for some mean.

The program on the basis of the user provided information decides on
a set of points

^=1
' ^2' X in the range of the distribution under

consideration. The test then compares the observed numbers, o. ,of
observations in each interval [X. , X.), with the expected numbers

= Pg
^^i-1 1 ^1 1 X.}

1
{Y. 1 < i < m }

Where is the user specified value of , if it was specified, and if

not, is the maximum likelihood estimator for a hypothesis of form (2)

above. The comparison of o. with e. is made by the statistic

n+1 (o - e )2

X = Z

i=l 1

The distribution of this statistic has an approximate X distribution when
the hypothesis is true and n is large. (See Billingsley , I961 )

.

The program prints the computed value of X and the number of degrees of
freedom for the test.

If one sample, with m observations, is to be tested, input to the program
from cards or sequential will be one variable with m observations. More
than one sample may be tested at a time, if the same distribution, or in some
cases a distribution from the same class, is the one being considered. Thus
a test of each of three samples, all of which are on the same sequential
storage or card deck, may be performed.
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II, Distributions Available

NOTATION: In the description below f(x) denotes the value of the probability,

density function of the point x. F(x) is the ci:imulative distribution function
defined as Pr {X < x }

A. DISCREET DISTRIBUTIONS

The Distributions are classified here as being "discreet," (i.e.

having positive probability at a countable number of values of the
random variable it describes) or as "Continuous" (having positive
density over a continuous range of values of the random variable).

1. BINOMIAL(N,P) N a positive integer; < p < 1

f(x) Qp^ (1-p)
N-x

for X an integer
such that < X < N

F(x) ): P) p^ (i-p)

i=0 ^ '

N-i for x an integer
such that < X ^ H

This distribution is appropriate, for example, in situations
where a random variable is sampled independently (observed) N times,
the observations, and where the values of the random variable can
be classified precisely as being in one of two sets often denoted
"success," and "failure," with probabilities p, and q = 1 - p
respectively.

2. POISSON (X)

f(x) =

x->o

. X -A
A e X >_ ; and x an integer

X

F(x) = Z

i =

-A

X >

The Poisson distribution is often used as an approximation
to the binomial when the number of observations is large,

p = Pr {success} is small, and the product n * p is essentially a

constant. The Poisson is a pervasive distribution in its own
right, arising in situations where the probability of no occurrences,
or of one occurrence of a phenomenon in a unit of time is moderate,
where the probability of more than one occurrence is essentially
negligible in comparison, and where the frequencies of occurrence in

adjacent intervals are independent of each other.
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B. CONTINUOUS DISTRIBUTIONS

2

NORMAL i\i^ ) -00 < jj < +00 >

f(x) =
/ T

20 a

-(X -
I

exp 2"

2 o^

.00 < X < +°o

F(x)
"T

2 n o

exp
-(t - M

15

2a"

dt -orj < X *• '^'^

Through the Central Limit Theorem, the use of this distrihution
has been justified to describe a tremendous variety of phenomena in

which the random variable under consideration is assumed to he the
sum of a large nujnber of independent random variables, each having
a small contribution to the total.

2. GAIvIKA (a, 6) a>0 , 6>0
.a a-1 -6x

^/ \ p X e
f(x; = — 77 c for X -

A (a }

F(x)
,,a a-1 -Bt
li t e dt

A(a)

^pre A(a) = (a-l) A (a-l)
integer, A(a) = (a-l)!

and so if a is a non-negative

The gamma distribution is the sampling distribution for the
sum of a independent identically distributed "negative exponential"
random variables, with B =X where A is the parameter for the
negative exponential distribution. The negative exponential
distribution is itself the special case gamma (l,g). The gamma distri-

bution is used in dealing with waiting times, where the expected
fx'equency in a given interval has Poisson distribution. The
"Chi-Square" distribution is another important special case of the
gamma distribution where

o
y" (r) i garama (r/2, 1/2).

3. RECTANGULAR (O^, 0^)

f(x) =
I-'.- 0.

0^ •- 02

01 '^ X < 0.

:x) =

X

•'1

X-0.

dt =

'2--'l
2 1

©1 <_ X ^02

.iJi9i[iK«««atB&
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This distribution is appropriate where any event in an
interval {Gj , 02) has equal probability of occurring, but no
occurrences will be outside the interval.

III. Use of the Program

A. PRELIMINARY

The program is invoked by the main parameter card (a 30UPAC
"Program Card"). Information concerning the distribution and
intervals to be used are supplied on subparameter cards for the
program.

Input is in the form of column vectors, and may be from cards or
sequential storage. Each variable (vector of data will be tested
against the same type of distribution, i.e. information provided
on the distribution card applies to all variables.

The subparameter card provides the mean<^ of ='"rp"'y' r.3 information
to the program concerning tne distribution to be used, as well a?

the number and size of intervals to be used in the tests. In
some cases a distribution parsjneter must be supplied by the user.

B. MAIN PARAI^ETER CARD

Immediately following the program name CHI-SQUARE GOODNESS-OF-FIT
(mnemonic: FIT), the following parameters are listed.

Parameter
Number Use of Meaning

Input Address. May be CARDS or
SEQUENTIAL (Sl, or S2, etc).

SUBPARAMETER CARDS

GENERAL DESCRIPTION

One "distribution card',' chosen from the list below,
should appear with each call to the program. For tests of
type 1 ("simple hypothesis") the parameters of the distribution
are specified on this card. For distributions allowing tests
of type 2 ("composite hypothesis") one or more of these
parameters may be left blank. Other parameters on the card
relate to intervals to be used for determining observed and
expected frequencies. Because this test is "asymptotically
valid," these should be chosen so that expected frequencies of
any interval does not fall below 5.

DISTRIBUTION CARDS

Where * * is used, a parameter requires a decimal point
number; when ( ) appears an integer is required.
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DISTRIBUTION

BINOMIAL(M)*P*(N).

M and P_ are parameters of the distribution, P the probability
of success on a trial, M the number of trials. N is the number
of points (integral values starting at O) to be grouped in each
interval. For a test of Type 2, the parameter P should be
left blank.

POISSON*A*(ENDPOiriT) (N)

.

A is the Poisson density parameter, and may be left blank for
a test of type 2. N is the number of adjacent points to be

grouped in each interval until ENDPOINT is reached. The
Interval [EiroPOINT, +«) is then the last interval.

RECTANGULAR*Gl**02*(lO .

01, and 02 are the endpoints for the range of the distribution
01 < 02. N is the number of equal sized intervals to use for
the t^str Only tests of type 1 are allowed with this distribution.

o

normal*u-'^^o''**stpt**zp*(n) .

o

y is the mean of the distribution, a^is the variance. Either
or both of the parameters may be left blank for a test of
type 2. STPT and EP are the start point and end point of an
interval to be broken up into N equal sized intervals for

the test. The additional intervals (-«>, STPT), and [ZP, +°°
)

will be used.

GAM.lA*a**3**ENDP0INT*(N) .

*a* is the degree's of freedom parameter, and must be specified.
*6* is the density parameter and may either be specified for
a type 1 test or left out for a type 2 test. The portion of the
real line between and ENDPOINT will be divided into N equal sized
intervals for the test. One additional interval, [ENDPT, +«>

)

will be included.

IV. Restrictions

A maximum of 50 input variables (each variable a sample to be tested)
may be input to the program. Only one distribution or distribution type
(e.g. NORMAL with variance 1 and any mean) may be tested.
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Y. Examples

/*1D

// EXEC
//SYSIN
FITfCARDC

SOUP
DD *

n.
NOR*2.0***»*-10**ll|*(2U)

END P

END S

DATA(1000,1)(21X,FU.1)

This program will test the hypothesis that the sample is from a normal
distribution with a mean of 2, for some variance. The interval [-10, lU)

will be divided into 2^4 pieces, each of length 1, for the test.

/**ID

/ / EXEC SOUP
//SYSIN DP «

FIT (CARDS).
BIN(lO)*l/2*(2).
END P

END S

DATA(600,1)(26X,F^

#END
/*

This program will test the simple (type 1) hypothesis that the sample was

from a B (10, 1/2) population. Note that with the given number (600) of
observations we had to group adjacent pairs of points into the same interval

to insure a reasonable expected frequency in every cell.



THE KOLMOGOROV-SMIRNOV STATISTIC

I. General Description

The program computes the Kolmogorov-Smirnov (K-S) D statistic.

D = 2^P
all X

F^(x) - F(x)

where F is the sample cumulative distribution for a sample of size N and
F(x) is the specified cumulative distribution.

II . Theoretical Discussion

The empirical distribution function which is determined by the
order sample x

(1)
. .X

(n)
'

for X < X
(1)

F„(x) = j/n for X/.v < X < X,. ^v

1 f°^ ^ ! ^(N)

win generally differ from the population distribution function. If
the sample distribution differs exceedingly from the specified
distribution F(x), the amount of the difference might be of use in

determining whether to accept the hypothesized distribution as correct.
The Kolmogorov-Smirnov test uses the maxmimum actual numerical
difference I F (x> - F(x) I .

Example (See Lindgren [U]):

Consider testing the hypothesis that a distribution is normal with
mean = 32 and variance = 3.2U with 10 sample observations

31.0
31.

U

33.3
33.

H

33.5

F (x) and F(x) are sketched below.

33.7
3h.U
3U.9
36.2
37.0

ju y/
i L__X

M^
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III,

D = .56 which is the maximum of |f (x) - F(x)| .

iJ

At the .95 confidence level the critical value D' = .U0925

Since D > D' the distrihut ion being tested is rejected at the 5^ level.

* See Owen [ 5

]

Notes

Only supply the parameters needed to determine a specified distri-
bution. This program, at this time, calculates the Kolmogorov-Smirnov
statistic for the following distributions if given the proper parameters

A, Normal
1

.

mean
2. variance
Central Chi-Square
Noncentral Chi-Square
1. degrees of freedom
2. noncentrality parameters*
Central F

1. degrees of freedom numerator
2. degrees of freedom denominator
Noncentral F

1. degrees of freedom numerator

2. degrees of freedom denominator
3. noncentrality parameter*
Central Beta
1. degrees of freedom numerator
2. degrees of freedom denominator
Npncentral Beta
1. degrees of freedom numerator
2. degrees of freedom denominator
3. noncentrality parameter*
Student's t

1. degrees of freedom
Gamma
1.

2.

A
B

where F(x) =

J ,A
t
;a-i) -(a/b)

dt

o' r(A)B
Exponential - special case of Gamma
1.^ A = 1

2. B = 1/L where L = rate of occurence
Noncentral T - transform to noncentral F

1. degreesoof freedom numerator
2. degrees of freedom denominator
3. noncentrality parameter*

Noncentrality parameter is defined
(See Graybill [3] for further
development of A )

.

N ,

Z y

i=l
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Sajnple Programs

A. Normal - type 1

2 = 32
a = 3.2U

K-S(C)(l) *32**3.2H*.

B. Central Chi-Square - type 2

d.f. = 2k

K-S(C)(2)****(214).

C. Noncentral Chi-Square - type 2

d.f. = 10
A = .25

K-S(C)(2)****(10)()(.25).

D. Central F - type 3

d.f. numerator = 5

d.f. denominator = l6
K-S(Sl)(3)****(5)(l6).

E. Noncentral F - type 3

d.f. numerator = 10
d.f. denominator = 13
noncentrality parameter (A) = 2.

5

K-S(S2)(3)****(10)(13)*2.5*.

F. Central Beta - type h

d.f. numerator = 5

d.f. denominator = 25
K-S(S2)(l+)****(5)(25).

G. Noncentral Beta - type h

d.f. numerator = 8

d.f. denominator = 20
noncentrality parameter = 2.8

K-S(S1)(U)****(8)(20)*2.8*.

H. Student's t - type 5

d.f. = 23
K-S(C)(5)****(23).

I. Gamma - type 6

A = 10
B = 3

K-S(S3)(6)*10**3*.

J. Exponential - type 6

A = 1

B = 1/.5 = 2 where L = .5

K-S(S2)(6)*1**2*.

K. Noncentral t - type 3

A noncentral t distribution can he transformed into a non-
central F distribution by squaring the values.
Degrees of freedom = 5

Noncentrality parameter = .25
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TRA ( C ) .

MUL(1)(1)(1).
OUT ( SI ) ( 1 ) .

END P

K-S(S1)(3)****(1)(5)*.25*.

V. Parameters

The following parameters follow the mnemonic K-S

:

Parameter
Number

1

2

3

1+

5

6

T

Description

Input address, CARDS, SEQUENTIAL 1-15-

Specified distribution (see Section IV)

Floating point value (Mean, A).

Floating point value (Variance, B).

Defirrees of freedom (nijmerator )

.

Degrees of freedom (denominator).

Floating point value of non-centrality
parameter.

Output address of x, . \ and F(x. )

.

SEQUENTIAL 1-15 and/or PRINT.

VI. References

[l] Darling, D.A., "The Kolraogorov-Smirnov, Cramer-Von Mises Tests,"
Annals of Mathematical Statistics , Vol. 28, (1957), pp. 823-838.

[2] Goo(.\night , James, Department of Experimental Statistics, N.C.
State University, Raleigh, North Carolina. Mr. Goodnight develop-
ed and programmed the computational procedure used to integrate
the central and non-central F distribution.

[3] Graybill, F.A., An Introduction to Linear Statistical Models ,

Vol. I, Chapter U, "Distribution of Quadratic Forms" pp. 7^-92.

[h] Lindgren, B.W., Statistical Theorv, New York: MacMillan Company,

(1962).

[5] Owen, D.B., Handbook of Statistical Tables . This book contains
a table of the critical values for the Kclmogorov-Smirnov
statistic. It is available for reference in the SOUPAC office.
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BINORMAMIN

I. General Description

BINORMAMIN ROTATION rotates a matrix, F, of orthogonal factor loadings
to oblique simple structure.

It does this by iterating for T in FT ^ A (where A is the rotated factor
pattern) so as to minimize:

Z
^{v^./h^.)iV:Jh^.)

K = ^ K =
P P P

Z q r
j^ JP^ J^ jq' J

q=P ^ -Z 2 A 2^ ,Z 2 /, 2
]

J jp' J J jq J

Since solving directly for K is too complex, BINORMAMIN takes one vector at

a time, rotating it against all the others, to minimize each Kp.

Its name comes from the fact that is uses a double (BI) NORMAlization
in seeking a MINimum.

For further information see

:

1. Kaiser, H. F. and Dickman, K. W., "Analytic Determination of
Common Factors". Unpublished manuscript. University of
Illinois, 1959-

2. Harmon, H. H., Modern Factor Analysis . Chicago, University
of Chicago Press, I960. pp.326ff.

II. Restrictions

III.

Input is limited to matrices of I50 x 30 or less.

Parameters

After the program name, BINORMAMIN, are the following parameters:

Parameter
Number

1

2

3

k

5

6

Use or Meaning

Input Address of factor matrix, F.

Output Address of factor matrix, F.

Output Address of the transformation
matrix, T.

Output Address of the reference vector
structure, V.

Output Address of the correlations between
reference vectors.

Output Address of the primary factor
pattern, P.
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Parameter
Number Use or Meaning

Output Address of the correlations between
factors.

Maximum number of iterations (see note). If
blank, the maximum will be set at 100 itera-
tions.

Convergence criterion (see note).
A. Defined zero change: iterating will stop

when each element in V changes by less
than A. (A must be less than .2 and no
less than .0000001)

.

10

B. Defined zero rotation: iterating will
stop when each vector in T changes by
less than 6, where 9 is the angle whose
cosine is B. (B must be less than 1.0
and no less than .2).

If left blank, A will be set to .001.

If an initial T is to be read in, input
address of T.

IX Output Address of the initial T.

Note on Output: A. Any output option left blank will not be output.

B. The program will always print out the program
name and the number of iterations actually done.

C. The program will print out the largest change in
V, unless option 9B is used.

D. All data printed out is to 7 decimal places.

Note on parameters 8 and 9' Program v/ill stop at v/hichever criterion it

meets first.

Note on parameter 9: This parameter is a floating point constant and there-
fore Tus t be enclosed in asterisks, with a decimal point, as in example:

Example : BINORMAIvIIN (CARDS) ( M USEQ 1 /PRINT' {' {) (PRINT) (
)* .0001*

.

Store V on SEQ 1, also prints Y and correlations between factors. On the last

iteration, no element in V changed by more than .0001, unless the maximum of

100 iterations was reached.



CENTROID FACTOR ANALYSIS

General Description

CENTROID FACTOR ANALYSIS computes a set of f linearly independent
vectors (factors^ which are mutually uncorrelated. Normally, a factor
analysis decomposes a matrix of correlations, R^, into a set of f

factors. The factors are arrayed as column vectors in the factor matrix,

F, such that

^ = ^^' ^ ^n-f)

-th
where Rn-f is the matrix of residual effects. The K factor is computed
by dividing the column sums of R , by the square root of the total sum of
elements of Rn-k

fi,k = Z r. .
^ V JlZ v. .

^k)

Between each factor extraction, the variables in the residual matrix
are successively reflected until all the columan sums are positive.

For more detailed discussion see:

1. L. L. Thurstone, Multiple Factor Analysis , Chicago,
University of Chicago Press, 19^7< PP- 1^+9-175 •

2. Harry Harmon, Modern Factor Analysis , Chicago,
University of Chicago Press, I96O, pp. 192-215.

II . Restrictions

The input matrix for the CENTROID program must not exceed the dimen-
sions of 190 X 190. The input matrix is further limited to being a square,
positive definite or semi-definite, symmetric matrix. Commonly, correlation,
covariajice, or cross-product matrices are used as input data. Any attempt
to introduce communality estimates (change the diagonal elements) must be
made before data is passed to the CENTROID program. A set of communalities,
which are incorrectly estimated, can make the matrix non-positive and could
conceivably cause a hang-up.

The input data may come from any storage medium which conforms to SOUPAC,
Similarly, the output codes follow the established conventions and are at
the option of the user.

The input matrix may be completely factored (i.e., N factors from a

N variable matrix"^ .

criteria;
However, factoring may be stopped by any of three

The user may specify the number of factors to be extracted.
This criterion provides an upper limit beyond which factoring
will not be done. Consequently, it is advisable to put the
maximum value on this limit in cases where it is not the
primary criterion. (Set it equal to the number of variables'
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2. The per cent of total variance removed from the R matrix is

a second limiting criterion. This parameter also specifies
an upper limit l:o the process. Therefore, it should be set

at 100 per cent unless it is the criterion for stopping.

3. The last criterion is to stop when the factor contribution falls

below 1. The use of this procedure is dictated by the presence
or absence of its associated parameter.

If all three criteria are used simultaneoulsy, factoring will be stopped by

whatever criterion is met first.

Til. Parajneters

Follov;ing the program anine on the program call card come the parameters

needed by the program. The parameters must appear in the order below:

Parameter
NutTiber

1

2

3

Use or Meaning

Input Address.

Output Address.

CARDS or SEQUENTIAL 1-15-

SEQ,UENTIAL 1-15 and/or PRINT.

Maximum number of factors to be extracted.
This must be less than or equal to the
order of the input matrix.

k Per cent of total variance to be removed
expressed as an integer between and 100.

5 The presence of any number greater than
in this parameter indicates that factoring
should stop when the factor contribution
falls below unity.

6 Output Address of Residual Matrix.

If parameters 3 and k are left blank then by default option they will be

set to maximum possible values and a message will be printed.

Residual Matrix must be stored before it can be printed.

Example: Assume that you have 77 variables ajid that the correlation matrix

is stored on SEQ 1 , then legal forms of CENTROID call statement may be:

CENTROID(SEQ 1) (PRINT) (77) (lOO) (l^

.

CENTROID (SEQ 1)(P(F))(50)(80).
CENTROID (SEQ 1)(SEQ 2/P) (20) (lOO) (l) (SEQ 3/P)

•

CENTROID (SEQ 1) (SEQ 2/P(F)Ml5) (90)0 (SEQ 3/P(F)).
CENTROID (SEQ 1) (P) . In this case, number of factors = 77
and per cent of variance = 100 v;-ill be assumed by default.
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COMMUNALITY ESTIMATION

General Description

Five methods of COMMUNALITY ESTIMATION are offered in this program,

In each case the estimates replace the diagonal elements of the matrix.
They are as follows

:

Code Number Method

The element of largest absolute magnitude in

each row replaces the diagonal element of the

row.

The square of the multiple R of each variable
with all others replaces the diagonal entry
for that variable. (See Special Comment Number 2)

Communalities produced from another analysis
and are to be input from cards or another
storage medium.

For each row (n)

N

iZ :

i.J
)/N)

1/2

replace the diagonal entry for that row.

This is the square root of the average
square across the row.

For each row (N) (r* )(S. - r* )/(S, - r* )

ik 1 ik '^ k ik
replaces the diagonal entry for that row
where

:

rf , = max ab s ( r . . ) and
Ik ij'

S. = Z abs (r..), S = Z abs (r .)
1 . ' ij'' k . ' kj'

J J

This method of COMMUNALITY ESTIMATION is due to
Professor L. Tucker.

II. Restrictions

Input is restricted to correlation matrices of order 150 or less.

[II. Parameters

The parameters for the COMMUNALITY ESTIMATION program appear on the
program call card. They must follow the program name in this order:

Parameter
Number Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15,
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Parameter
Number

2

3

h

IV. Special Comments

Use or Meaning

Output Address. SEQUENTIAL 1-15 and/or PRINT.

Section Code Number. (See General Description ),

Input Address if Option 3 is used.

(1) If the correlation matrix and communalities both are input from cards,

the correlation matrix precedes the communality estimations. (See Code
Number 3 in the General Description ^

.

(2) If the input correlation matrix is sing^ilar, or very nearly so,

squared multiple correlations computed by standard procedures may be subje^

to considerable error, and will usually exceed unity for several variables
For this reason, the user should be aware of the characteristics of the
matrix. The program will check to see that all R~ are less than or equal
to 1.0. If this is not the case, execution will cease and a message will
be printed stating that the correlation matrix is virtually singular.
There is an alternative procedure devised by Ledyard Tucker for finding
R in singular matrices. Information is available in the SOUPAC office. .

V. Reference

Harmon, Harry: Modern Factor Analysis , Chicago, University of Chicago
Press, i960, pp. 83-90.



ITERATIVE FACTOR ANAI.YSIS

General Description

A. ProceduraJ.

This routine^ upon option, provides one of four iterative factor-
ization methods:

1. Alpha factor analysis (AFA, Kaiser, I962)

2. Canonical factor analysis (CFA, Rao, 1955, Harris, 19^2)
3- Stepwise maximuin likelihood factor analysis (MLFA, Lawley, 19^0)
k. Iterative principal axis factor solution (IPRAX, Traditional)

All four methods have in common that communalities and factor loadings
are estimated simultaneously. In three cases (AFA, CFA, IPRAX) the

number of factors decision can be made beforehand by the user, or it

can be left to the program, in which case appropriate modifications of
Guttman's lower bound criterion will be used.

The four methods differ from each other in theory with respect to the
defining criterion of optimization, and consequently they differ tech-
nically with respect to the matrix that is diagonalized in each case.

1. AFA (Kaiser)

Optimization criterion : maximize the alpha- reliabilities
(Cronbach) of the retained factors. If the number of factors
decision is left to the program, the Kaiser modification of
the Guttman criterion will be used and all factors with
positive alpha-reliability will be iterated upon.

The diagonalization is on the matrix C in

C = H"-^ (R - U^) H-1 so that C = Q0Q'

where R is an nxn input matrix of covariances, H is a diagonal
matrix of communalities, U^ = I - H^ is a diagonal matrix of
uniquenesses, Q is an nxm matrix of latent vectors corresponding
to the m largest latent roots in 9 which are used to recompute

^ -I /o pnew estimates of H^ through F = H Q 0-^/^. An initial set of H
is provided by I - (diag(R~-^) )"-'- which is equivalent to the

squared multiple correlations of R if R itself is a correlation
matrix.

Invariance under scaling : Kaiser has shown that the resulting
factors will be invariant under scaling, i.e., if a covariance
matrix R gives rise to a factor matrix F then the covariance matrix
SRS will give rise to a factor matrix SF (S diagonal).

Behavior of latent roots, alpah reliabilities : the n-m rejected
roots of C add to zero at each state (i.e., C is non-Gramian),
the m accepted roots are simple functions of the alpha-reliabilities
of the retained factors in F. These reliabilities will be output
by this sub -program,

.
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2. CFA (Rao, Harris^

Optimization criterion : maximize the correlations betv/een m
linear combination of the common parts of the variables with m
linear factors that are canonically correlated (Hotelling) with
the variables in the common factor space. If the number of
factors decision is left to the program, the Harris modification
of the Guttman criterion will be used, leading to a Gramian
R-U of minimum rank

.

The diagonali:7at1 on is on the matrix

U''^^ U'-'- so that C = Q0Q'U
-1

(K

where F - UQfA/'' is used to recompute new estimates for U^,

retaining the m largest roots of C in 0- The notation is the

same as in section 1 Cafa^. An initial set of U^ is provided by
[diag (R-ll]-l.

Invariance under scaling : the resulting factors are again invariant
under scaling as defined in section 1 (AJ'A'.

Behavior of latent roots : Chi- square criterion: Rao has shovm
that the n-m rejected roots approach unit at convergence. For
exact raiik m data they will be "exactly" unity within the tol-
erance of the convergence criterion ETA (see section III - B).
P'or data containing random error their departure from unity
provides a likelihood ratio test for the hypothesis that the
population matrix P-V -^ GG' , where P, G are population
parameters corresponding to R, U, F in the sample, is rank m
or less. A criterion for this test is computed by this sub-

program, which can be compared with two chi-square approximations
which are also output by this sub-program. Note that such a

chi-square test is valid only if the iterative process has indeed
converged, as indicated by the maximal discrepancy between trial
vectors which is printed out for that purpose.

3. MLFA (Lawley^

The CFA variant of the program can be used for a step-wise maximiuxn

likelihood factorization in the Lawley-Rao sense.

Optimization criterion : maximize the likeliliood function corre-
spotiding to the multivariate normal distribution with covariance
matrix parar.etors P -GG '

-!- V^ (as defined in section 2, CFA), eiven

the sample matrix R, under choice of G and ')l and observing the

side-conditions that P -V*^ is Gramian and V diagonal withO<Vj_<l

Hie diagonalir.ation is the same as in CFA, section 2, hence, the
resulting factors are again invariant under scaling as defined in

section 1 (AFA) .
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In contrast to CFA, however, the number of factors decision is

made on statistical ground. The user would start with a reason-
able guess for m (preferably m < n/P to ensure positive degrees
of freedom for the chi-square test, which otherwise will be by-
passed) . After convergence has been obtained, the user would
insepct the chi-squared statistic. If the statistic is below the
table values of the chosen porbability level (.05 or .01), then
the hypothesis can be accepted at this level with corresponding
risk and the user has the option to reduce m for a second run,

etc. On the other hand, if the adjusted statistic exceeds the
table value, then m must be raised until the adjusted statistic
warrants acceptance of the hypotheses.

Within the package the user is free to re-enter the routine
repeatedly with sequentially de- or increasing m specified on

the call card. Since the test assumes convergence, it is per-
tinent that the number of iterations be allowed large enough
for convergence to occur within the chosen tolerance bound ETA
(see section III - B) .

k. IPRAX (traditional^

Optimization criterion : none

The diagonalization is on the matrix

2
C = R - U so that C = Q0Q'

where F = Q.sV'^^' is used to recompute H = I - U^, retaining
the m largest roots in P. The notation is the same as in

section 1 (AFA) . An initial set of H^ is provided by the
identity matrix. If the number of factors decision is left
to the program, the unmodified Guttman criterion will be used,

i.e., all factors corresponding to roots of the input matrix
R which exceed unity will be retained.

Invariance under scaling : as defined in section 1 (AFA) is

not obtained by this method.

The behavior of the latent roots is not known at present. No
statistical or other significance can be attached to the m
largest or n-m smallest root of C.

5- Both covariance matrices and correlations matrices are accept-
able as input. If covariances are used the tenth parameter
should be 1. In this case the covariance matrix is scaled into
a correlation matrix, and all computations, in particular the
number of factors decision, are based on this correlation matrix.
At the final stage the factors are scaled back so as to account
for the covariance matrix which was input. The matrix of residuals
is computed in the metric of the covariances.
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References

:
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19^0, LX, 6U-82.

Rap, C. R. "Estimation and Tests of Significance in Factor
Analysis," Psychometrika, 1955, XX, 93, Hi-

ll Restrictions

input is restricted to matrices of order 100 x 100 or less. Up to

50 factors can be handled by this program. If the number of factors
decision is left to the program and more than 50 factors are estimated,
an appropriate message will be printed out and control will be returned
to thQ system.

III. Parameters

Tlie program name is ITERATIVE FACTOR ANALYSIS. After the name on
the call card the parameters must appear in the following order:

Parameter
Number Use or Meaning

Input Address of correlation or covariance

matrix. CARDS or SEQUENTIAL 1-15-

Output Address of correlation or covariance

matrix. SEQUENTIAL 1-15 and/or PRINT.

Output Address for principal axis factors.
SEQUENTIAL 1-15 and/or PRINT.

Output Address of residual matrix. SEQUENTIAL 1-5

and/or PRINT.

Option code if IPRAX
1 if ALPHA
2 if CANONICAL
3 if STEP-WISE MAXIMUM LIKELIHOOD
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Parameter
Number Use or Meaning

Maximum nujnber of cycles to be executed.
If left blank, 50 cycles will be used as
upper limit.

Number of factors to be extracted. If left
blank, all factors with roots exceeding unity
will be retained.

10

Exponent of convergence, n, where tolerance
ETA = 10"". If left blank n = 3 or ETA = 10-3.

If all goes well, the program will stop as soon

as either one of the stopping criteria is met.

Error stops, if they occur, are labelled
accordingly.

Sample size (for CFA only). If left blank,
the chi-square computations are by-passed.
If specified, chi-square is computed with the
sample size.

1 if input matrix was a covariance matrix.

Output common to all four sub -programs

1. Matrix output within system conventions:

a. R (input covariance matrix^
b. F (factor matrix)
c. R-FF' (residual matrix)

2. Vector output, print only:

a. communality vector (last iteration)
b. vector of latent roots of C (last iteration)

3. Constant, print only:

a. number of iterations completed
b. largest discrepancy between trial vectors

(H^, U~ , H"-*-, depending on sub-program''
c. root mean square of off-diagonal residual matrix
d. per cent of variance removed

Additional output specific to sub-programs

AFA: The alpha-reliabilities of the m retained factors

CFA: chi-square statistic, chi-square approximations (Wilson,
Hilferty) for p = .05 and p = .01, for comparison with
statistic. Degrees of freedom.
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IV. Special Comments

The accuracy should be approximately 6 digits in computations,
possibly somewhat lower for a very large number of iterations. The
effective accuracy depends on the chosen tolerance ETA and the actual
convergence as indicated by the largest discrepancy between trial
vectors. The chi- square approximations are v;ithin 2 x 10"^ for more
than 8 degrees of freedom.



JACOBI

I. General Description

This program calculates eigenvalues and eigenvectors of a square,

symmetric matrix, using the JACOBI rotating technique. This program is

limited to matrices of 110 rows and 110 columns. The user should realize
that this technique is extremely slow on large matrices, while the program
takes no longer than PRINCIPAL AXIS FACTOR AI^ALYSIS for small matrices
(up to 20 X 20).

II. Parameters

Parameter
Number Use or Meaning

Input Address of correlation matrix,

or SEQUENTIAL 1-15.

CARDS

Output Address of eigenvectors.

Output Address of principal axis factor.

Output Address of eigenvalues, stored as a row
vector. PRINT is not valid . The eigenvalues
are always printed.

Number of eigenvectors (or factors') to be out-
put.

III. Special Comments

The eigenvalues are stored in descending algebraic order (from largest
to smallest), and the eigenvectors and factors are placed in the same order.

IV. Reference

Ralston, A. and Wilf , H. S. : Mathematical Methods for Digital Computers ,

John Wiley and Sons, New York, I96U.

:^Z





OBLIMAX ROTATION

I . General Description

The OBLIMAX OBLIQUE ROTATION transforms a set of factors F to a new
set V such that the factor kurtosis,

k
ZL V.

K =
ij

(ZE V. . )
10

i = 1, 2,

J = 1, ?, , k

is at a maximum,

The purpose of the transformation is to attempt to rotate analytically
to a position similar to that obtained by applying Thurstone's rules for
simple structure. (See Multiple Fac^tor Analysis , L. L. Thur stone, 19^7,

pp. 319-^10.)
not the same,

both procedures will agree exactly.

However, Thurstone's rules and the oblimax procedure are

., and it is too much to expect that results obtained from

It would be desirable to solve directly for the transformation matrix
T, but unfortunately no solution to this problem has been found. Instead
oblimax takes two vectors at a time, solves for the rotational angles,
transforms the vectors, and then selects another pair until all k(k-l)
pairs have been rotated. This process is repeated iteratively until the
criterion K no longer increases. Despite the pairwise procedure, K is

well behaved, and in general, approaches steadily to a minimum.

For any pair of factors, a and b, the solution proceeds as follows:

K
ZZisi. cos 0. + b. sin 0.

)

1 IJ 1 ^J

h
EZ:(a. + b. X.)

1 1 J

h

2n2
[ZZ(a. cos 0. + b. sin 0.) ] [zz(a. + b. X.)"]

The derivative of Kg^-b is set equal to zero, resulting in a quartic
equation in X which is tan 0. Two solutions for X will be maxima, and,

each X is found, the sign of the second derivation is inspected to select
maxima. A small transform (2 x 2) is created, but before post-multiplication
is performed, the transforms must be adjusted so that when it becomes a part
of T, t , and t^^, will remain normalized. In this way, both B and T are
developed pair by pair.

For references see:

Pinzka, C, and Saunders, D. R., "Analytic Rotation to

Simple Structure II: Extension to an Oblique Solution."
Research Bulletin RB-5^-31' Princeton, N. J. : Educational
Testing Service, 195^-

Alternate Use

If the user already has a transformation matrix, he may use it to com-
pute V-^g et.al by giving the input address of T in parameter 8; in this case.
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the oblimax calculation of T will be skipped. If both F and T are to be
input from cards, then the data deck of F should precede the deck of T.

III. Output

The OBLIMAX program always prints the following (unless parameter 8

is used)

:

1. The value of K for each pass

2. The iteration time

It outputs the following on demand (See Parameters)

:

1. Transformation matrix T

2. Reference vector structure, V^^ - FT

3. Reference vector correlations, C^,g = T'T

\\. Diagonal of D and of D"-"-

where D is the diagonal matrix of the reciprocal
square root of the diagonal eler-ents of C "-^

-1

'rs5. Primary factor pattern, V^p = FTD

6. Primary factor correlations, C|»p = DC ^" D

All data is printed out to seven decimaJ. places.

Restrictions

The number of variables plus the number of factors must be no more
than 300.

V. Note on Parameter

IV.

If row normalization is specified, the normalization constamts will be

preserved and the rows will be rescaled to proper length after rotation anc

prior to output.

VI . Parameters

The program name, 0BLI^4AX, appears first on the program, call card
and is followed by the following parameters. Any output option (except
parameter 9) may be SEQUENTIAL 1-15 and/or PRINT; it may be left blank
if not desired.

Parameter
Number Use or Meaning

Input Address of F. CARDS or SEQUENTIAL 1-15

•



VII.0BL.3

Parameter
Number

3

h

5

6

7

8

9

Use or Meaning

If rows are to be normalized before rotation,
punch a 1; otherwise a zero or leave blank.
(See Note on Parameter 2 )

.

Output Address of T.

Output Address of V

Output Address of C

rs

rs

Output Address of V-p^

Output Address of C„

Input Address of T (See Alternate Use )

.

D-value and Inverse of D. PRINT only.





ORTHOGONAL PROCRUSTES; KAISER'S TECHNIQUE
FOR RELATING FACTORS BASED ON DIFFERENT SAMPLES

General Description

This program offers 2 options.

1. Orthogonal Procrustes . Given 2 matrices, a factor matrix A and a

target matrix B, the program solves

AT = B + E

for T in a least squares sense (i.e., minimizing tr(E'E), under the
restriction that the transformation matrix T by orthonormal , i.e.

m I m _ mm I _ y

There are no restrictions on A and B other than conformability. In

particular, the method does NOT require full column rank in either of

these input matrices.

For further information and some applications, see

Schonemann, P. H., "A Solution of the Orthogonal Procrustes
Problem with Applications to Orthogonal and Oblique Rotation,"
Unpublished Ph.D. thesis, I96U, (on file).

2. Kaiser's Technique for Relating Factors Based on Different Samples.

Given 2 factor studies based on different samples but overlapping in

some (not necessarily all) variables, this technique yields, under
certain mild (non-singularity) conditions and certain strong assump-
tions, a matrix of estimated cosines between the two sets of factors
which might be interiDreted as correlations in a very loose sense
("quasi correlations"). Operationally

R
12

= R
Ic cc c'2

where R and R
,

give the correlations of orthogonal reference axes
{such as centroid or principal axis factors) with primary factors in
each study, ^cc' ^^ ^^^ transformation matrix obtained when
fitting one set of tests to the other by the Orthogonal Procrustes
technique above, and R]_2 is the matrix of quasi correlations
relating the factors of one study to those in the other. This matrix
need not be square. The program, as written, assumes centroid (or,

equivalently , principal axis) matrices and reference vector structures
as input and proceeds to compute R^,-^ and R^'p f^o^i those, assiiming

this to be most convenient for most users. Note that the essential
information is embodied in the matrix 'R^^y which is identical with
the matrix T of the orthogonal Procrustes routine, so that the remain-
ing algebra can also be performed by other programs in SOUPAC , if
more convenient.
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For further information, see:

Kaiser, H. F. "Relating Factors Between Studies Based Upon
Different Individuals." Unpublished MS., U. of I., I96O.

II. Restrictions

III.

Input is restricted to matrices of order 100 x 50 or less.

Parameters

The program mnemonic, ORT, appears first on the card and is followed by
up to 13 parameters

Parameter
Number

Description

1 Input Address
CARDS or SI-SI5

2 Input Address
CARDS or SI-SI5

3 Output Address
SI-SI5 and/or
PRINT

k Output Address
SI-SI5 and/or
PRINT

5 Output address
SI-SI5 and/or
PRINT

6 Output address
SI-SI5 and/or
PRINT

7 Output Address
SI-SI5 and/or
PRINT

Orthogonal
Procrustes

Kaiser '

s

Factor Matching

AT

1 tc

2''tc

l\=

2\c

Input Address
CARDS or S1-S15

(reference vector
structure for study l)
1. tn

Input address
CARDS or S1-S15

R (reference vector
structure for study 2)

10 Output Address
SI-SI5 and/or PRINT;
Blank if not desired

1 tn

11 Output address
SI-SI5 and/or PRINT;
Blank if not desired

2^tn
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Parameter
Number

12

Description

Output address
S1-S15 and/or

PRINT.

Orthogonal
Procrustes

Kaiser '

s

Factor Matching

R ("quasi correla-

tions j

13 Input address

integer k.

of needed only if there
are m factors in study
1 and k < m factors in

study 2.

Note: If parameter 8 is empty, an Orthogonal Procrustes Solution will
"be computed and control will then be returned to the system. If an input
address for iR-^n' ^^^ reference vector structure of the first study, is given,
it will function as a switch and invoke the subroutine for Kaiser's technique.
In this case, the reference vector structures should be in the same order as

the centroids. All h matrices should contain only variables which were common
for both studies.

Rectangular R-ip' '^^ ^^^ number of factors were different in both studies,
say m > k, then the matrices with m factors should each precede the corres-
ponding matrix with k factors. For brevity, let this input sequence be denoted
by Fjj^, F, , Vjjj, Vj^. Fjj^, V^^, and F-^ should be read in with a format for m
columns, e.g. its data card might read "DATA(m) (mF5.3)" so that its machine
image will be augmented by m-k coliimns of zeros (so as to allow for an Ortho-
gonal Procrustes fit of the centroids). On the other hand, V is to be read
with a format signaling k columns, e.g. its data card might read "DATA(k)
(kF5.3)" (so as to allow for inversion of V ' V ) . Finally, the 13th parameter
should be k in this case.





SCATTER PLOTS

I. General Description

This program generates 2 different types of one-page plots depending
on the type of data input. If only one row of data is input, the program
generates a successive value plot. That is, a single row of data will be
interpreted as representing successive values of a single variable and
will be plotted on the vertical axis, while the column number (value
number) is plotted on the horizontal axis. For example, this feature is

especially suitable for plotting a row of eigenvalues output from a factor
analysis program.

If more than one row of data is input, the program generates bivariate
scatter-plots , assuming that columns represent variables. The program will
generate a separate one-page scatter-plot for each possible pair of variables,
up to a limit specified by the user. The user cannot specify particular
pairs to be plotted. The first variable of each pair is plotted on the
horizontal axis and the second is plotted on the vertical axis.

II. Options

There are four options available in this program.

l) Bounds on axes : The user may specify upper and lower bounds
for either or both axes. If the user does not specify these limits
the program will generate its own bounds for the axes. Any
point lying beyond user-specified bounds will be omitted from
the plot

.

2/ Printed Axes : The user may specify whether he wants printed axes
included in a bivariate scatter-plot . Since these axes must be
printed at the center of the graph, they should probably be
omitted if the origin of the plot to be generated will not also
be centered on the graph.

3) Point Identification : The user may specify whether points in the
plot should be individually identified or plotted as x's. There
are 60 identification characters available; if the user requests
identified points, the first 60 points will be identified as
follows

:
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Point

POINT IDENTIFICATION TABLE

ID Point ID Point ID Point ID

1 A 16 P 31 5 k6 K
2 B IT Q 32 6 hi L

3 C 18 R 33 7 U8 M
h D 19 S 3U 8 i^9 N

5 E 20 T 35 9 50
6 F 21 U 36 A 51 P

T G 22 V 37 B 52 Q
8 H 23 W 38 C 53 R

9 "I 2U X 39 D 5h S

10 J 25 Y UO E 55 T
11 K 26 Z hi F 56 U
12 L 27 1 U2 G 57 V
13 M 28 2 1+3 H 58 w
Ik N 29 3 kh I 59 X

15 30 k h5 J 60 Y

Obviously", if there are more than 35 points on a given plot,
there will be some duplicate identification characters. It

remains for the user to differentiate these points by virtue of
their location on the plot

.

If the identification is requested, the program will plot

points 6I-85 as asterisks, but points beyond #85 will be omitted
entirely. In general, if a user wishes to plot more than 60

points, it is not recommended that he specify identification
of points.

If the user specifies counted points, the program will plot
an X at the location of each point. If there are 2 or more points
at a specific location, the program will plot a number (2, 3, •••, I

indicating how many points are present at the location. If

more than 9 points exist at a specific location, the program
will plot the letter M at that location.

h) Variables to be_ plotted : The user may specify the number of
variables for which he wants pairwise scatter plots. The program
will generate bivariate plots for all possible pairs of the
set of variables specified. For example, if the user inputs a

matrix of 10 eigenvectors and sets this parameter (#2) equal to
h, the program will generate plots for eigenvectors 1 vs 2, 1 vs 3,

1 vs U, 2 vs 3, 2 vs h, and 3 vs U.

Ill, Input

Input must be either (l) a single row of data to be converted to a

successive value plot, or (2) a data-matrix to be converted to bivariate
scatter-plots

.



VII.PL0.3

IV. Special Comment

Due to the various problems involved in plotting points on standard
computer output paper, these scatter-plots will "be of limited accuracy.
The most obvious problem is that there are a finite number of locations at

which a given character can be printed, resulting in slight misplacement of
many points. Thus, though the plots will present a valid and useful
picture of the general relationships present in the data, the user should
be cautious in any technical or detailed analysis of these graphs.

V, Parameters

The program mnemonic (PLO) appears first on the program card and is

followed by up to 7 parameters; only the first parameter is required.
Parameter 1 is an address; parameters 2 and 3 are Integers enclosed in

parentheses; parameters U-7 are floating point niimbers enclosed in

asterisks. Parameters h and 5 should be either both specified or both
blank. Also, parameters 6 and 7 should be either both specified or

both blank.

Parameter
Number Use or Meaning

Input address (cards or S1-S5)

Number of variables to be plotted. (The
value of this parameter is irrelevant if

input is a single row. If this parameter
is omitted in a bivariate scatter-plot
program, all possible pairs of variables
will be plotted.)

Code for point identification and inclusion
of axes;
(-1) axes omitted; points counted
(-2) axes omitted; points identified
(1) axes included; points counted
(2) axes included; points identified
Default is ( -1 )

.

Upper bound of X-axis

Lower bound of X-axis

Upper bound of Y-axis

Lower bound of Y-axis

VI. Example

/*ID

// EXEC SOUP

//SYSIN DD *

CORRELATIONS (CARDS) (P) (Sl/P)
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VI. Example (continued)

PRINCIPAL AXIS (SI) (S2/P) (lO) (lOO) (o) (S3/P) ( SU

)

PLOT ( S2 ) ( U ) ( 2 )

.

PLOT (S3) (h) (2) *1* *-l* *1* *-l*.

PLOT ( SU ) .

ENDS

DATA (10) (10F3.0)

data deck

END#

/*

This program would do the following: compute a correlation matrix for
the data on cards; factor the correlation matrix, storing 10 factors on
S2, 10 eigenvectors on S3, and a row of eigenvalues on Sk}, PLOT all
pairs of the first h factors, with axes printed, points identified, and
the program setting its own bounds for the axes; PLOT all pairs of the
first h eigenvectors with axes printed, points identified, and
bounds of +1 and -1 for both axes; PLOT the row of eigenvalues as a

successive value plot with axes omitted and points marked as X's.

*This program was developed from a program written by
the University of North Carolina.

F. W. Young of



PRINCIPAL AXIS FACTOR ANALYSIS
(Eigenvalues and Vectors)

General Description

The purpose of PRINCIPAL AXIS FACTOR ANALYSIS is to determine a

factor matrix, F, given a Gramian matrix, R, of order n such taht

(n,f)F'(f,n) = R^-(n,n)R*i

where R* is an approximation to R-

The column vectors of F are defined as the factors (m.easures of

dimensionality) of the original matrix, R. The solution for the matrix
F is the classical eigen problem. Consequently, the computations are

done by an eigenvalue subroutine. Before output the eigenvectors, E-;,

are scaled as follows

:

f(i,j) = e(i,j)*lambda(j)**.5

for I = 1, ....,n. J = 1, ....,n.

to generate the principal axis factors, F. (See Introduction on Factor Analysis)

For a more detailed discussion see:

Harry Harmon, Modern Factor Analysis , Chicago, University of
Chicago Press, I96O,, pp. 15^-191.

Restrictions

The input matrix for the PRINCIPAL AXIS program must not exceed the

dimensions of I90 x I90 double precision. The input matrix is further
limited to being a square, symmetric matrix. Generally correlation,
covariance, or cross-product matrices are used as input data. It should
be noted that matrices with large numerical entries such as cross-products
may generate output values which cannot be printed under the fixed out-
put formats. The probability of this happening is very small. Any com-

munal.ity estimation (i.e., change in the diagonal entries of R) must be
done prior to the input of R, to the PRINCIPAL AXIS program.

If the communality estimates are used, the user should check the
resulting roots for negative numbers. If any exist the associated vector
is meaningless.

The input data may come from any source conforming to SOUPAC. Similarly,
the output codes follow the established conventions and are specified at the
option of the user.

The R matrix may be completely factored (i.e., N factors from N vari-
able matrix) . However, there are three criteria which may be used to stop
the factoring:
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1. The user may specify the number of factors to be extracted.
This criterion provides an upper limit beyond which factoring
will not proceed. Therefore, it is necessary to put the

maximum value in this limit in cases where it is not the
primary criterion.

2. The percentage of total variance removed from R is the
second limiting criterion. This parameter also specifies
an upper limit to the process. Therefore, it should be set
at 100 per cent unless it is the criterion for stopping.

3- The last criterion is to stop when the factor contribution
(eigenvalue or root) falls below 1. The use of this pro-
cedure is dictated by the presence of its parameter.

If all three criteria are employed simultaneously, factoring is stopped
by whichever criterion is first met.

III. Parameters

The parameters for the PRINCIPAL AXIS program appear on the program
call card. They must follov: the program name in this order:

Parameter
Number

1

2

3

Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15-

Output Address. SEQUENTIAL 1-15 and/or PRINT.

Maximum number of factors to be extracted.
This must be less than or equal to the
order of the input matrix.

The percentage of total variance to be
removed expressed as an integer between

and 100.

The presence of a number greater than
indicates the factoring should stop when
the eigenvalues (roots') fall below unity.

Output Address of Eigenvectors

The address of where eigenvalues are to be

placed as a rov/ vector if they m.ust be

stored for further use. If values need
not be saved, leave parameter blank. • PRINT
is not valid.
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Parameter
Number Use or Meaning

Mode of sorting eigenvalues and associated
vectors. The codes are as follows:

Code Meaning

1
2

10

11
12

Descending algebraic order
Descending absolute values
Order of extraction
Ascending algebraic order
(the k smallest root)

Ascending absolute values
Reverse order of extraction

Leaving any parameter blank is the same as specifying zero. Con-

sequently, options which are not needed can be avoided by leaving the
associated parameter blank.
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PROCRUSTES (Oblique Case)

General Description

This program offers 3 options:

1. (Oblique) Procrustes. Given A, B, the program solves

2.

AT* = B + E

for T* in a least square sense (i.e

so that

T* = (A'aT'^'A'B,

minimizing tr[E'E]),

and then normalized T* by columns to yield T = T*D so that
diag (T'T) = I. It then computes AT which^ in a loose sense,

can be regarded as a least squares fit to A to B under the

restriction that diag (T'T) = I. It also provided

^f = D]^(T'T)~-^ where Dn is a normalized diagonal matrix
so that diag (Cf) =1. If D gave the cosines between tests
C^ will give the factor intercorrelations. A has to be a

full column rank.

Dwyer Extension Analysis . Given F = ^tc ^ centroid or

equivalent matrix of cosines between tests t and uncorrelated
factors c, and L = Rcn^ ^ matrix of cosines between uncorre-
lated factors c and uncorrelated reference vectors n, this
program computes

Q = Ttn
= F(F'F)"'^L

which is used as a post-multiplier on some correlations
matrix Rg-j- between the tests t x in F and some set of
extension variables e given R^n^ "^^^ cosines of the extension
variables e with reference n, to the extent that the former
can be projected into the sub-space spanned by the latter.
This multiplication

Ren = ^et ^tn

can be performed by use of the MATRIX program.

3' Left Inverse (transposed "i
. Given A, the program will return

Q = A(A'A)"-'-

provided A was a full column rank. Q is the transposed left
inverse of A which can be used in lease squares application.

II. Restrictions

Input is restricted to matrices (A, B, or F) of order 190 x 50 or less,
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III. Parameters

The parameters for this program appear on the program call card.
They must follow the progra.n name in this order:

Parameter
Number Use or Meaning Procrustes DEA LINY

1 Input Address
CARDS or

SEQUENTIAL 1-15-

A F A

2 Input Address
CARDS or

SEQUENTIAL 1-15- B L

3 Output Address
SEQUENTIAL 1-15
and/or PRINT.

A F A

Output Address
SEQUENTIAL 1-15
and/or PRINT.

Output Address
SEQUENTIAL 1-15
and/or PRINT.

Q A(A'A)'

Output Address
SEQUENTIAL 1-15
and/or PRINT.

Output Address
SEQUENTIAL 1-15
and/or PRINT.

AT

Output Address
SEQIIENTIAL 1-15
and/or PRINT.

E

Choice Address



SQUARE ROOT FACTOR ANALYSIS

General Description

The SQUARE ROOT method of factor analysis, also called the Diagonal
Method, by L. L. Thurstone, decomposes a correlation matrix R (or any
other positive semi-definite or definite symmetric matrix) such that

R = F F' + R(k+1)

where R(k+l) is the residual matrix after extracting k factors. Of course
if all n factors are extracted, the residual matrix becomes a null matrix.

The factor f.: is computed by dividing each element of the j"'-'^ column
of R by its diagonal square root

:

fi.i = ^i.i/*^ij' JJ
(i = 1,2, ,n)

The matrix A = f^'f is then subtracted from R and the operation repeated
on the residual matrix.

Prior to the widespread use of high speed computers, the SQUARE ROOT
method was sometimes used as a substitute for the PRINCIPAL AXIS or CENTROID
method due to the relative ease of computing a square root factor. When
used in this way, one seeks to extract the maximum variance for each factor,
in which case Parameter k should be blank. The program then selects
the next column on the basis of the largest residual column sum of squares.

Nowadays, however, the SQUARE ROOT method is more likely to be used
for special, purposes. By selecting successive pivot variables, the user
retains control over the factoring. Factors are passed directly through
the test variables and the effect of these variables is removed from the
matrix. The communalities or row sums of squares are the squared multiple
correlations of the remaining variables with the pivot variables.

The pivots selected may be any columns in the matrix. Let us assume,
however, that these are adjacent to each other in the upper right hand
corner of the partitioned matrix below:

R -
^PP ^ps

sp ss

^
Then the effect of pivoting successively on the variables in the upper
right hand corner is shown by the residual matrix as follows:

r"p R "R R ^^.
ss sp pp ps

II. Restrictions

A. Dimension

Maximum size of the R matrix is I90 variables,
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B. Special Conditions

1. The researcher may specify the extraction of any number of
factors up to dimension of R.

2. The researcher may specify the diagonal element to be used
in the extraction of each factor, or he may have the procedure
remove the maximum variance each time.

3. The residual matrix may be saved if the researcher desires.

III. Parameters

Folloving the program name the parameters must appear in the following
order on the program call card:

Parameter
Number Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15-

(Correlation or positive definite or semi-
definite matrix).

Output Address. SEQUENTIAL 1-15 and/or PRIin".

Number of factors extracted.

Input Address for row vector specifying order
of diagonal elements to be used in factor ex-

traction. Optional. CARDS or SEQUENTIAL 1-15-

IV. Special Comments

Output Address for residual matrix.
SEQUENTIAL 1-15 and/or PRINT.

If the diagonal element for each factor is specified, and if both
input addresses are cards, then data precedes diagonal specification.

V. Example

Assume you have a 20 x 20 correlation matrix on cards and that you
want to extract 15 factors ; also you are reading the pivot column from
cards. The program would be set up as follows:
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/^ID

// EXEC SOUPAC
//SYSTN DD »<

squ(c)(pMi5UcUp)
end soupac
DATA(2C)(8F9.T)

'. data

END II

DATA(15)(15I2)

END #
diagonal specification card(s)





THREE-MODE FACTOR ANALYSIS

General Description

A. GENERAL' COMMENTS

This program provides a factor analytic solution for a 3-dimensional
i by j by k data matrix. The computational procedures employed are
those presented in Method III of Tucker's article (reference belov)

.

This method provides most efficient analysis when one of the modes,
usually individuals is quite large, though this is certainly not a

necessary condition.

B. THE THEORETICAL MODEL

Here, i, j, and k represent the modes of classification which are
directly related to the observation of the data; i, j, and k are thus term-
ed observational modes. An example would be the observation of
scores for i individuals on j tests given under k different conditions.

Through factoring, we wish to reduce the observational modes i, j,
and k to corresponding derivational modes m, p, and q. Each of the
derivational modes can be thought of as a set of factors in the domain
of the corresponding observational mode. The core matrix G then serves
to describe the relationships among the derivational modes.

The fundamental three-mode factor analysis model is represented by
the equation:

^ijk

III
a. b . c,

m q p im jp kq mpq

where x. ., is an approximation to the observed score x. ., : a. , b. ,

ijk ijk im JP
and c, are entries in two-mode matrices .A , .B ,

kq 1 m J p
and , C describing

k q
the elements in the observational modes i, j, and k in terms of the
dimensions in the derivational modes m, p, and q respectively; the
coefficients g are entries in a three-dimensional matrix G and rep-

°mpq
resent the measures of the phenomenon being observed for each combin-
ation of the dimensions of the derivational modes.

In matrix form, the model could be represented as:

.X., = .A G, A B. I C) ,
1 jk 1 m (pq) p J q k

where A indicates a Kronecker product. Matrices A, B, and C are
factor solutions for modes i, j, and k respectively which serve to
transform the core matrix G of the 3 derivational modes to the matrix
X representing the 3 observational modes.
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C. INPUT DATA

The input data must be a Gramian matrix, usually correlations,
covariances, or cross-products, in the form .,R., , where i is assumed

to be the largest mode and jk represents the combination mode, with
mode k nested within mode j

.

II . Out put

The output consists of the following:

(1) the .P. and Q^ matrices which represent the correlations,
J J k k

covariances or cross-products within modes j and k respectively;

(2) the eigenvalues and principal axis factors of .,R., ;
jk jk'

(3) the eigenvalues and eigenvectors of P.:
J

(U) the eigenvalues and eigenvectors of
k -k'

(5) the core matrix G , where m, p, and q represent the deriva-
pq m ^ -1 £-

tional modes corresponding to observational modes i, j, and
k respectively.

All of this is printed out and may also be stored on sequential
storage devices. The user must specify the number of factors to be
extracted from each of the three modes. This procedure is employed
since the use of other factor-stopping criteria (e.g. per-cent of
variance accounted for, or eigenvalues below unity) could easily lead
to the computation of a great many useless factors as well as a very
large and unmanageable core matrix. The user is also cautioned against
specifying large numbers of factors since this would cause substantial
increases in time required to factor the various modes and compute the
core matrix.

It is strongly recommended that the user be familiar with the
Tucker article and with factor analysis in general before attempting to
use this program.

Ill . Parameters

The program mnemonic (T-M) appears first on the program card and
is followed by the following 17 parameters, the first 8 of which are
required. Output addresses are optional. All output is printed.

Parameter
Number Description

Input address of R matrix in the form

., R., (Cards or SI-SI5).
Jk jk

Number of subjects or elements in mode i



V1I.T-M.3

Parameter
Number

8

9

XO

11

12

13

lii

15

16

IT

Special Comment

Description

Number of variables in mode j .

Number of variables in mode k. »

Number of factors to be removed from matrix R

(mode i )

.

Number of factors to be removed from matrix P

(mode j )

.

Number of factors to be removed from matrix Q
(mode k)

.

Sci^atch address (see special comment).

Output address for row vector of eigenvalues of R,

Output address for principal axis factors of R.

Output address for matrix .P..
J J

Output address for row vector of eigenvalues of P,

Output address for eigenvectors of P.

Output address for matrix
k^k-

Output address for row vector of eigenvalues of

Output address for eigenvectors of Q.

Output address for core matrix G .

pq m

The three-mode factor analysis program requires three separate interval
storage areas. SOUPAC , however, has only two such areas available within
its programs. Thus, the user must supply a scratch address. This can be
any sequential file (S1-S15) not used as another parameter in the three-mode
program. Any data previously stored on this file will be destroyed.

V . Reference

Tucker, Ledyard R. Some mathematical notes on three-mode factor analysis
Psychometrika, I966, 31, 279-311.





UNRESTRICTED MAXIMUM LIKELIHOOD FACTOR ANALYSIS

Parameter
Number

k

5

6

T

8

9

10

11

12

13

Use or Meaning

Input Address for correlation matrix.
SEQUENTIAL 1-15; CARDS are not permitted

Output Address for final unrotated factor matrix.
SEQUENTIAL 1-15- See also Parameter 13.

Input Address for row vector of initial
estimate of uniqueness. CARDS, SEQUENTIAL
1-15 (optional).

Lower bound for number of factors.

Upper bound for number of factors.

Sample size (number of observations) on
which correlation matrix is based.

Maximum n^umber of iterations.

Probability of chance occurance, i.e., *1.00*.

1 to print input correlation matrix and partial
correlation matrices after any variables have
been removed.

1 to print technical output.

1 to print intermediate results.

1 to punch unrotated factor matrices.

1 to apply a varimax rotation to all factor
matrices. If this parameter is used the output
of parameter 2 will be a rotated factor matrix.

This program has been taken directly from Joreskog (I96T) with his per-
mission. Anyone interested in the methods is referred to the references listed
below. The program is temporarily limited to 75 variables and 30 factors.
Parameters 1, k, 5» to? T) and 8 are required. Parameter 8 must be enclosed
within asterisks, **, and must have a punched decimal point.

References :

Joreskog, K. G. UMLFA - a computer program for unrestricted maximum likelihood
factor analysis. Research Memorandum 66-20. Princeton, New Jersey:
Educational Testing Service. Revised Edition, 196?.

JSreskog, K. G. Some contributions to maximxam likelihood factor analysis.
Psychometrika , I96T, 32, U1+3-U82.





VARIMAX FACTOR ROTATION

I . General Description

VARIMAX ROTATION is used to redistribute a factor matrix (principal
axis, centroid, etc.) variance so that the matrix approaches orthogonal
simple structure. The varimax scheme maximizes the following criterion
function:

E (hZ(a/ . X

s . (j,s)
J

2/h(.,2)2
ilia... .^'*'(3f)f)

• V J 5 S /

(J

II

where j is the variable index number: 1,

s is the factor index number: 1,.. ,
f

a,, . \ is the factor loading of the j variable on the s factor

hj is the j variable communality

For further discussion see:

H. F. Kaiser, "Computer Program for Varimax Rotation in Factor
Analysis", Educational and Psychological Measurement , Vol. XIX,
Nov. 3, 1959, pp. Ul3-i+20.

Cooley and Lohnes, Multivariate Procedures for the Behavioral
Sciences , New York, John Wiley and Sons, Inc., 19^2, pp. l6l-3.

Restrictions

The number of factors may be anything greater than or equal to 2.

Any factor matrix generated by a statistical system factor analysis
program is acceptable input. A matrix may also be entered from cards.
If this is the case, the number of rows in the matrix must be specified
on the data format card.

Parameters

The parameters for the VARIIvIAX ROTATION appear on the program call
card. They must follow the program name in this order:

Parameter
Number Description

Input Address. CARDS or SEQUENTIAL 1-15- If
CARDS are used the DATA card must contain the
number of rows as well as the number of
columns in the input matrix (see User's Guide
for details )

.

Output Address. SEQUENTIAL 1-15 and/or PRINT,
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Parameter
Wumter Description

3 The presence of a number greater than in this
parameter indicates the communalities should be
printed.

k or blank for normal VARIMAX. 1 if raw VARI-
MAX is desired.

5 Output Address of transformation matrix T. H
SEQUENTIAL 1-15 and/or PRINT,



II

III

VARISIM ROTATION

General Description

Given an input factor matrix A, this program computes by an iterative
procedure an orthonormal transformation matrix T to rotate A to simple
structure by the equation

AT = B.

Thus, the program provides an orthogonal rotation of a factor matrix A of
uncorrelated factors to a factor matrix B of uncorrelated factors. The
mathematical criterion employed is quite similar to Kaiser's Varimax
criterion; however, there exist definite contrasts between the two tech-
niques. First, the Varisim program is considerably slower than the
Varimax program, often taking three to four times as long to obtain con-
vergence. The time ratio is dependent on the size of the factor matrix,
there being only small differences for small factor matrices. Second,
the two methods lead to quite different solutions in the case of a large
factor matrix, though results are often quite similar for small matrices.
In general, the factors rotated by the Varisim program are characterized
by more even contributions to the common test variance than the corres-
ponding Varimax factors. That is, while Varimax attempts to concentrate
variance accounted for on the first few factors, Varisim will distribute
this variance accounted for more evenly across the factors. Naturally,
Varimax, by definition, provides greater simplicity of structure, though
usually only slightly superior to Varisim.

Restrictions

If input is from cards, the ntunber of rows in the input factor
matrix must be specified on the data format card.

Parameters

The program mnemonic VSM appears first on the card and is followed
by up to 6 parameters

.

Parameter
Number Description

Input address of factor matrix A. CARDS
or SEQUENTIAL 1-15-

Output address of rotated factor matrix B.

SEQUENTIAL 1-15 and /or PRINT.

Output address of transformation matrix T.

SEQUENTIAL 1-15 and/or PRINT.

Maximum number of iterations; if left
blank, 100 iterations will be stopping
criterion. (See special comment.)

S«g:
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Parameter
Niimber Description

Exponent of convergence n, where tolerance
ETA = 10-'^

. If left blank, n is set to 3.

(See special comment.)

Output address of factor matrix A. SEQUEN-
TIAL 1-15 and/or PRINT, or left blank if not

desired

.

I

IV. Special Comment

Only in rare situations will the limit of 100 iterations be
approached. In most cases, 10 to 20 iterations will be sufficient.
The default convergence criterion of 10~3 should be adequate in all
cases since this has been found to lead to an unambiguous and unique
solution. Thus, for virtually any standard input factor matrix, param-

eters h and 5 can be left blank.



TUCKER-MESSICK POINTS OF VIEW ANALYSIS

I . General Cormnents

One of the classic experimental designs in perceptual research
involves subjects making similarity judgments for all possible pairs
of a given set of stimuli. The Tucker-Messick model was developed
to analyze such data in order to discover whether particular groups
of individuals have different viewpoints about stimulus interrelation-
ships. Results of the analysis show what different viewpoints are
present within the sample and the extent to which each individual uses
each point of view.

Since its conception, however, the technique has been applied to a

wide variety of data for purposes of examining individual differences
in judgment or performace. This results from the fact that, for any
set of measurements for N individuals on n variables, the model specifies
the dimensions of greatest variation among individuals, and the extent
to which each individual is characterized by each dimension. The tech-
nique can be of great value in studying individual differences in many
different situations.

II . Description of the Mathematical Model

The present description of the model will be based on a data matrix
containing measurements on or by N individuals on n stimuli or variables.
(Note: these stimuli can, in fact, be stimulus pairs in a paired-
comparison judgment situation.) This program assumes input of an N x n
data matrix, X'. The crucial question which the model attempts to answer
is whether there exists consistent covariation among groups of individuals
on the n variables. The question is resolved by factoring X' into its
principal components. The factor solution of X' indicates the number of
dimensions required to account for individual differences in performance
or judgments. For judgment data, this represents the number of consis-
tent viewpoints being used within the sample. The final result of this
procedure consists of one matrix which specifies the dimensions of the
stimulus space accounting for greatest individual variation, and another
jnatrix specifying the extent to which each observed individual is char-
acterized by each of these dimensions.

The notation below corresponds to notation in the Tucker-Messick
article. Since X is asymmetric and rectangular, it cannot be factored
directly. Thus, we use the Eckart-Young procedure to construct a matrix
X which approximates X but is of lower rank. X is constructed from the
r largest characteristic roots and vectors of X, according to the Eckart-
Young model

:

(1) X = u r V7
r r r r

These components are computed from the cross-products matrix P,

( 2 ) P = XX
'

,
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as follows: analyze P into principal components; i.e.,

(3) p = ur^u'

and truncate to r desired characteristic roots and vectors
now solve equation (l) for W :

r

(h) W = r ~^U 'X.
r r r

We can

Elements in W represent projections of points corresponding to indi-
viduals on the unit-length principal vectors of X. Elements in U
represent projections of points corresponding to stimuli on the unit
length principal vectors of X.

Since each vector of W is composed of N elements and is of unit
length, it is otvious that the loadings, or projections of individuals,
are dependent on sample size N, We can rescale W into a matrix V

r

(5)
1/2

V = N ' W

Then the coefficients in V will be independent of sample size. To

art-'!)

-1/2

maintain the Eckart-Young relationship, we must also rescale U :

(6) Y = U N"

Equation (l) can now be rewritten:

(T) X = Yr V,
r r

Elements of V and Y represent scaled projections of individuals and
stimuli respectively on the principal vectors of X. Matrix V can then
be converted to a factor matrix A of scaled projections of individuals
on principal factors by weighting each vector by the square root of
the corresponding eigenvalue:

(8) A = r V,
r

III.

Combining equations (T) and (8), we find that:

(9) X = YA.

This equation represents the final result of the present program.

Output and Further Analyses

1. Data matrices computed : This program will compute and print
or store on request matrices P, W ', U , Y, V, and A', along with the

eigenvalues of P. Printed output includes explanatory labels and
equations

.



VII.VEW.3

2. Rotation : Y and A might be rotated so that the inherent dimen-
sions of individual variation will be in positions more appropriate for

psychological interpretation. A transformation matrix T can be derived
to rotate to simple structure, e.g. by the Varimax criterion:

(10) B = TA, and

(11) Z = YT"-^

We then have, combining equations (9)) (lO), and (ll),

(12) X = YT'^TA = BZ
r

and the Eckart-Young theorem is still satisfied.

3. Person Space Plots : Since entries in matrix B represent co-
ordinates of points for individuals on rotated axes, this space may be
readily plotted graphically by making scatter plots for each possible
pair of axes. This may be done by hand or by inputting matrix B to the
SOUPAC program SCATTER PLOTS. Plots could also be made prior to rota-
tion on the basis of matrix A. These plots can be a crucial step in the
analysis of homogeneous subgroups or of widely deviant individuals in

the data.

h. Correlating dimensions with outside variables : Since each
in,dividual receives a score on all r derived dimensions, correlations
may be computed between these dimensions and scores on other outside
measures—perhaps personality or performance measures—in order to

ascertain properties and correlates of the derived dimensions. This
would be accomplished by augmenting the matrix A (or B) with a matrix
of measures for the same individuals on other variables and computing a

correlation matrix from this data.

5. Idealized Individuals : The user can insert, at any desired
location on the plots of the factor space of individuals, additional
points which can be interpreted as "idealized individuals." Their
location can be determined from any desired criterion, and any number
of idealized points can be inserted into the person space. These points
of interest may represent centroids of clusters, deviant individuals,
etc. By combining the Tucker-Messick program with the MATRIX program,
the user can reconstruct raw data for the conceptual individuals based
on the r dimensions retained. This would be done as follows:

a)

b)

c)

e)

f)

read the coordinates of each ideal point on each factor;
record the r coordinates of each point in a row vector;
adjoin these row vectors for g idealized individuals into
a matrix G'

;

punch the matrix G' and, using the MATRIX program, store
it on a sequential file;
store the matrix Y as output from the present program;
using the MATRIX program, transpose Y to get Y' and com-
pute reconstructed data matrix X^ ' via the following
multiplication: g
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X' = G'Y'

.

This can "be done after rotation by substituting rotated dimensions
(Z') for unrotated dimensions (Y').

IV . Special Comments

(1) Input : The input matrix is denoted X' and is composed of
N rows representing individuals and n columns representing variables
or stimuli.

(2) Eckart-Young approximation of X' : By outputting matrices
U and W (parameters 6 and 7) along with the eigenvalues of P, the
user can obtain the fundamental Eckart-Young resolution of the raw
data matrix. By performing the proper matrix manipulations (equation
(1)), one can obtain an Eckart-Young approximation to X based on r

dimensions

.

(3) Specifying the number of factors : The number of dimensions
to be retained must be specified in parameter 3. This decision is

usually based on a preliminary computer run which computes and factors
the matrix P; the number of dimensions retained is determined by the
resulting series of eigenvalues.

{h) Type of P-matrix to be used in analysis : Though the
mathematical model is written in terms of a cross-products matrix P,

this matrix might also be composed of correlations or covariances.
This option is specified in parameter 2.

(5) Multi-dimensional scaling : This technique was originally
developed to be used with judgment data, in conjunction with multi-
dimensional scaling analyses. If the user wishes to proceed in this
direction, it is strongly recommended that he have at least a funda-
mental understanding of the Tucker-Messick model as well as the general
concepts involved in multi-dimensional scaling. The SOUPAC office has
information about and access to the widely used TORSCA program,
commonly used in conjunction with the Tucker-Messick model.

V. Parameters

The program mnemonic VEW appears first on the card and is

followed by up to 10 parameters. Since computations are based on
parameters which are specified, there should be no blanks in the
parameter string. For example, if the user wants output through
parameter 9 , all previous parameters must be specified. This occurs
because the program cannot compute the matrix for parameter 9 with-
out first computing the previous matrices. The exception to this is

that parameter 5 can be left blank since eigenvalues will always be
computed and printed.
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Parameter
Number Description

Input address of matrix X'

SEQUENTIAL 1-15.
CARDS or

VI References

Code specifying type of P matrix to be
computed:

(1) cross-products
(2) correlations

(3) covariances.

(1) is default.

Number of factors to be extracted from
matrix P.

Output address of matrix P. SEQUENTIAL 1-15

and/or PRINT.

Output address of row of eigenvalues of P.

SEQUENTIAL 1-15. These are printed auto-
matically.

Output address of matrix U: projections of
stimuli on unit length vectors of X. SEQUEN-
TIAL 1-15 and/or PRINT.

Output address of matrix W : projections of

individuals on unit length vectors of X.

SEQUENTIAL I-I5 and/or PRINT.

Output address of matrix V: scaled projec-
tions of individuals on principal vectors of

X. SEQUENTIAL 1-15 and/or PRINT.

Output address of matrix Y: scaled projections
of stimuli on principal vectors of X. SEQUEN-
TIAL 1-15 and/or PRINT.

10 Output address of matrix A': scaled projec-
tions of individuals on principal factors of
X. SEQUENTIAL 1-15 and/or PRINT.

Tucker, L. R. and Messick, S. "An Individual Differences Model for

Multidimensional Scaling", Psychometrika , 19^3 , pp. 333-367.
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ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS

General Description

The ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS program performs oper-
ations on the model X3 + YF = U. Using the following definitions (dimensions

of matrices are given in parentheses):

T is the number of observations
NY is the number of eq^uations in the model and the number of jointly depen-

dent variables in the model since the two must be the same
NX is the number of predetennined variables plus the constant tenn
N is the number of variables plus the constant term; N = NY + NX

[XY]/ ^ is the raw data matrix plus a coltmin of constant terms

ffl

is the matrix of coefficient estimates. This matrix includes the
estimate of the intercept term

(N,NY)

The program calculates the following:

(1) Estimate of residuals: U/^ ^^s = (XY),^ ^.

r 1
3

(n,ny)

(2) Durbin-Watson statistic for each equation (i)

,2

DW(i) =
^^2 tU.(t) - U. (t-1)]'

T ^ _

,S,[u.(t)]2

(3) Estimate of the variance-covariance matrix of residuals:

^ 1 '^ ^

(NY, NY) "^T^iNYjT) ^(T,NY)

(M Reduced form estimates: fi^^^^^^, = ('^'=^'
(NX.NX) ''^'^'(M.Ny)

(5) Reduced form predicted values: Y^^
^y)

=
^(t nx) ^(NX NY)

(6) Estimate of reduced form residuals: V^^
^^^

= Y^^
^y)

"
^(t nY)

(T) Estimate of the variance-covariance matrix of reduced form, residuals

^(NY,NY) " T ^(NY,T) ^(T,NY)
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II . Restrictions

Only those inputs used in the calculations called for need be given.
They must be in the following formats:

(1) Coefficients:

The coefficient matrix for K equations with N-1 variables, Nl predeter-
mined and N2 jointly dependent, must be a K by N matrix. Each row
corresponds to an equation. The first element in each row is the con-
stant term followed by the coefficients matrix (i.e., predetermined
coefficients first; jointly dependent coefficients next). In each row,
there must be -1 which corresponds to the jointly dependent variable
that was normalized on.

(2) Raw Data:

The data must be arranged so that predetermined variables occur first
and jointly dependent variables last. (The TRANSFORMATION program may
be used to arrange data in this way, if it is not already like this).

(3) Raw Data Cross-products Matrix:

The cross-products matrix must have the following form:

ZX

ZX

Cross-products

Care should be taken to see that an input address is specified for any data
needed in calculating the desired statistics and that any intermediate statistics
needed are stored (i.e., an output address besides print is specified). The
following list indicates which previous statistics are needed in the calcula-
tion of each statistic.

1. Estimate of Residuals ~ coefficients and raw data

2. Durbin-Watson statistic - coefficients and raw data

3. Estimate of Covariance matrix of residuals - coefficients, raw data
and the number of observations

h. Estimated Reduced form coefficients - raw data

I

5- Reduced form predicted values and residuals - reduced form coefficients
(no output address) and raw data
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(6) Estimate of Covariance matrix of reduced form residuals—estimate

of reduced form residuals and the number of observations

Parameters

The parameters appear on the program card following the mnemonic ECON

in the following order (See also Special Comments):

Parameter
Number Description

Input Address for coefficients. SEQUENTIAL 1-15-

Same as output address for K-CLAS.

Input Address for raw data cross-products matrix.
SEQUENTIAL 1-15- Same as output address for K-CLAS.

Input Address for raw data. SEQUENTIAL 1-15- (See

Special Comments).

Number of predetermined variables (total).

Output Address for estimates of residuals. SEQUEN-
TIAL 1-15 and/or PRINT.

If P, the estimate of the variance-covariance matrix
of residuals is printed.

If P, (estimated) reduced forms are calculated and
printed.

If P, reduced form predicted values and residuals are
printed.

Special Comments

If P, the estimate of the variance-covariance
matrix of reduced form residuals is printed.

If Parameter Number 3 is specified, the Durbin-Watson statistic will be
calculated and printed.

The ECONOMETRIC REDUCED FORM AED RESIDUAL ANALYSIS program requires input
from the K-CMSS ESTIMATION program and/or the THREE STAGE LEAST SQUARES
program. The following example illustrates.
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V. Example

/*ID [accounting information to include REGION size]

/ / EXEC SOUPAC
//SYSIN DD *

TRA(C).
MOV(C)(SU).
END P

K-C(SU)(S2)*1*(T)(S1)(S3)(P).
(3)(1)(1)(2)(3)(8).
(3)(1)(1)(2)(M(10).
(3)(1)(5)(6)(T)(9).
END P

EC0N(S2)(S3)(SU)(T)(S5/P)(P)(P)(P)(P).
END S

Notice that there is no ENDP card after the ECON program because ECON
has only a main parameter card.

VI. References

i960,

Johnston, J., Econometric Methods, Nev York, McGraw-Hill Book Company, Inc

Goldberger, Arthur S., Econometric Theory , New York John Wiley and Sons,
Inc. , 196k.



K-CLASS ESTIMATION

I. General Description

There are three estimators which belong to the K-class. These include;

Ordinary Least Squares (multiple regression), IVo-stage Least Squares, and

Limited Information Maximum Likelihood.

II . Description of K-Class Output

The K-Class program calculates the "basic statistics:

IX.
- where N = Sample Size

zx.x.

Mean: X. = -rr
1 N

Variance Covariance:

Standard Deviation;

ij N
X.X.
1 J

s. = / S.

.

1 11

s.

.

Correlation: C. = —^—
ij s.s.

Cross-products in matrix notation : CP = X'X

K-Class also calculates the eigenvalue to "be used in Limited Information
Maximum Likelihood estimation.

K-Class then goes on to calculate estimates and associated statistics for
Ordinary Least Squares (OLS), Limited Information Maximum Likelihood, and Two-

Stage Least Squares.

Formulas

6' =

Y =

y

Y

X

o

estimates of the jointly dependent coefficients

estimates of the predetermined coefficients

variable normalized on

jointly dependent variables in the equation

predetermined variables in the equation

X = predetermined variables in the system

a = intercept term

e = error term

^*
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Estimating Formulas

^ Y

Y'Y - kV'V

X»Y

Y'X

X'X
# *

or

= A ^ J

where V'V = Y'Y - Y' X(X' X)~^X'

Y

V'y = Y'y - Y'X(X'X)'^X'y
•' o "^ o "^ o

k determines the estimating technique and is an arbitrary scalar which

may be either random or nonstochastic

.

Standard Error of Estimate

; = y;y, - (B y) c

N-.i

where j = Rank of A
-1

Standard Error of the Estimated Coefficients,

11
= The square root of the i diagonal element of the

o A matrix

T-Ratio

t =

11

Covariance matrix of the coefficients

2 "2-1
C = o ^ A

Intercept term :

a = y^ - Y(3) - (X^)(y)
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II. Ordinary Least Squares (OLS)

When k = is specified. Ordinary Least Squares estimates are computed.
Y is then assumed to be another predetermined variable in the equation. When
ordinary least squares is specified the following additional statistics are
supplied

.

In matrix notation

r2 =
0C - Zyo" / N

yo'yo - %o / N

Explained Sum of Squares
Total Sum of Squares

Total Sum of Squares : TSS = yo'yo - i^Yo) /^

Regression (Explained) Sum of Squares ; RSS = Qc - I {jo )/N

Error (Unexplained) Sum of Squares : ESS = TSS - RSS = yo'yo - QC

Example: Suppose that there were two possible models that one wanted to
estimate. In one model variable 10 is included and in the other variable 10
was not included.

K-C(S1)(SU)*0*(10)(S2)(S3)(P).
(10) (1)(1) (2) (3 )(!+)( 5) (6) (7) (8) (9) (10) (11).

(9)(1)(1)(2)(3)(1+)(5)(6)(T)(8)(9)(11).
END P

V- Limited Information Maximim Likelihood (LIML)

l^en k = y, where y is the smallest eigenvalue of the equation, is specified,
then Limited Information Maximum Likelihood estimates are computed.

The eigenvalue is calculated in the following manner:

Let W^ = Y'Y - Y'X^ (X'X)~^X4 Y

W = Y'Y - Y'X(X'X)~-^ X'Y

K-Class uses the smallest eigenvalue of the matrix WW .

Example: Suppose that there is a two equation system with four predetermined
and two jointly dependent variables. The following program will calculate LIML
estimates for both equations:

K:-C(C)(S3)*-1*(1|)(S1)(S2)(P)(S5).

(2)(2)(1)(1|)(5)(6).

(2)(2)(2)(3)(5)(6).
END P
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V. Two-Stage Least Squares (2SLS)

When k = 1 is specified Tvo-Stage Least Squares estimates are computed.

Example: Suppose one has a three equation model that contains three jointly
dependent and ten predetermined variables. The following program will calculate
2SLS estimates.

K-C(C)(S3)*1*(10)(S1)(S2)(P).
(5)(2)(1)(2)(3)(U)(5)(11)(13).

(M(2)(3)(U)(6)(T)(12)(13).
(5)(2)(1)(2)(8)(9)(10)(11)(12).
END P

VI. Parameters

A. Main Parameters

Parameter
Number Description

Input Address. CARDS or SEQUENTIAL 1-15.

Output Address for estimated coefficient.
SEQUENTIAL 1-15- Sajne as input address for ECON.

Floating point value of k. (See special comments)
This value should be enclosed in asterisks.

Niunber of predetermined variables in the system.

Output address for cross-products matrix.
SEQUENTIAL 1-15 and/or PRINT. Same as input
address for ECON.

Output address for raw data covariance matrix.
SEQUENTIAL 1-15 and/or PRINT.

T If P, correlations matrix will be printed.

8 Output address of eigenvalues if LIML. SEQUENTIAL
1-15.

9 Type of Input = raw data
1 = cross-products
2 = covariance

If the input is raw data the ninth parameter may
be omitted.

B. Sub-parameters (Equation Control Cards)

Subparameters are needed for all K-Class programs. There is one sub-
parameter card for each equation. Each equation card has the following form:
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Parameter
Number Description

Number of predetermined variables in the equation.

Number of jointly dependent variables in the
equation.

The variable number of all variables in the

equation in the order:

1 - predetermined in the equation
2 - jointly dependent in the equation

with variable standardized on last.

C. DATA cards must be punched with predetermined variables first, jointly
dependent variables last.

VII . Special Comments

A. If k = *0*

If k = *1*

If k = *-l*

Ordinary Least Squares Estimates are computed.
2-Stage Least Squares Estimates are computed.
Limited Information Maximum Likelihood Estimations
are computed.

K-Class accepts data from cards or intermediate storage either as raw
data, cross-products, or covariance. If cross-products or covariance
are used as input to K-Class, the matrix must be in the following order

Cross-products Covariance

Ex

Lx

cross-
products

covariance

VIII. References

Goldberger, A.S., Econometric Theory , New York, John Wiley and Sons, Inc.,
I96U.

Johnston, J., Econometric Methods , New York, McGraw-Hill Book Company, Inc.,
i960.
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LINEAE PROGRAMMING

General Description

LINEAR PROGRAMMING maximizes or minimizes a linear function subject to

certain linear inequalities called constraints.

In matrix notation:
Find the solution to

AX <, ~, >b (a system of linear equations or inequalities)
which maximizes (or minimizes)

Z - CX
where X >

A is the matrix of coefficients of the constraints^ X the vector of vari-
ables, C the vector of costs or profits associated with e ach variable^ and b

a vector or matrix of non-negative constants which places a bound on the linear
equations.

The equations, AX <, ~, >b in n variables define and bound a space called
the feasible space in which all allowable values of the n variables are defined.

The SIMPLEX criterion finds those combinations of variables which optimize the
objective function within this feasible space. To solve the system of linear
equations defined above, the inequalities m.ust be changed to equalities. This
is accomplished by addition of surplus variables to "greater than" constraints,
and slack variables to "less than" constraints. To create the basis for solving
a system of linear equations, an identity matrix must be formed and augmented
to the A matrix of structural variables. Creation of the identity matrix is

completed by addition of artificial variables to constraints with a "greater
than" relational operator. The program adds any needed variables.

Since there are more variables (structural + surplus + slack + artificial)
than rows, some method must select which variables will be in solution. The
SIMPLEX Algorithm selects a number of variables (equal to the number of rows)
which will be in solution. The final solution is the maximum (or minimum) of
the linear function subject to the constraints. Since slack and surplus vari-
ables have "real" meaning, they may appear in the final and intermediate solu-
tions. Their presence as a non-zero value indicates that the constraint to
which they were added is not binding. Artificial variables have no "real"
meaning. Presence of artificial variables in solution indicates that some con-
straints are so constructed as to preclude a solution which has "real" meaning.

The slack and surplus variables are given costs of zero in the objective
function. Artificial vai'iables are given large negative costs. SIMPLEX attempts
to drive artificial variables from solution.

Failure to drive artificial variables from solution may indicate a problem
in which constraints are mutually exclusive or that the cost assigned to the
artificial variable is not large enough.
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In matrix notation the augmented matrix before calculations begin would
appear as : , i i

A
I
I

I
S

I

- b

where I is the identity matrix of slack and artificial variables and S is the
matrix of surplus variables. Row operations are performed on the augmented
matrix according to the SIMPLEX criterion. After any number of row operations,
the inverse matrix of the original coefficients of structural variables now
in solution is contained in the columns where the original identity matrix was
located. At every stage (row operation) an identity matrix will be present.
This identity matrix indicates the variables in solution.

Since the original table is stored by the prograun, it is possible to com-

pare the results of the inverse obtained through LINEAR PROGRAMMING with the
inverse obtained by a standard inversion technique. The user may set the absol^;

value for this comparison in Parameter 3- If the comparison does not meet the f

accuracy requirement, a new table is formed using the original table and the
calculated inverse. After a feasibility check, the program continues calculatioi
until an acceptable solution is obtained.

References

Llewellyn, R. LINEAR PROGRAMMING . New York, New York:
and Winston, I966

.

Holt, Rinehart,

Hadley, G. LINEAR PROGRAMMING . Reading Massachusetts
1963.

Addison-Wesley,

II Restrictions

The program is limited to a maximum of 90 rows or constraints, 300 coluirai^

or variables, and 5 columns in the requirement matrix.

These limits are internal limits and the user is warned that large problems
may exceed the program capacity during accuracy check and calculations involving
multiple column requirement matrices. Program capacity WILL be exceeded if:

the number of constraints + number of structural variables + number of "greater
than" inequalities > 300.

III.

Input may come ONLY from CARDS in the form of subparameters.

Parameters

All floating point numbers (indicated by FP) must be enclosed by a pair of
asterisks. All integer numbers (indicated by IM) must be enclosed in parentheses
The main call to the program and each subparameter must be terminated by a period
(•).

The program is entered by punching the symbols L-P followed by the appropri-
ate main parameters and subparameters. All main parameters have default options.
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Main Parameters to follow L-P

1 Cost of artificial variables *large negative FP numbers*.
Default = -1.E50.

2 Minimum value for calculations ^FP*. If any calculation
falls below this value, it is set to zero. Default =

internal calculations.

3 Value for accuracy check *FP*. If absolute value for calcu-
lated difference (See General Description ) falls below this

value, final value is termed inaccurate and calculations are
performed to correct rounding errors. Default = .5 •

h If 1, suppress print of solution matrix (IN).

5 If Ij, suppress print of check matrix (INK

6 Print every IN"^" step, i.e. rovy operation (iN"* .

7 If 1, insert small positive, non-zero number for any zero in the b

vector. Useful aid if b vector contains many zeros-

Subparameter
Tne program now expects to find the word MINimize or MAXimize followed

by a string of constants which represent^ in sequential order , the cost or

values associated with each variable. All non-zero constants (with or without
decimal) must be enclosed by a pair of asterisks. Zeros may be enclosed by
asterisks. A series of sequential zeros may be represented by a pair of paren-
theses, i.e. the integer number in the pair of parentheses represents the number
of sequential zeros to be inserted. All coefficients must appear and be in

sequential order .

The cost coefficients representing the objective function are terminated by
a period. The constraints are entered in a similar manner. All variables must
be in sequence. Coefficients of zero must be included. Multiple requirement
vectors are entered in the standard form. The constraint is terminated by a per-
iod. Comments which do not include period (.), comma {,), asterisks (*) or left
parenthesis may be entered at any point outside those characters delimiting con-
stants. The requirement vectors are separated from the rest of the constraint
by relational operators. All coefficients must appear and be in sequential order ,

The program recognizes three relational operators: LE (less than or equal),
EQ, (equal), and GE (greater than or equal). These relational operators are
surrounded by quotes ("). See Section V. Examples in this program.

Output

The output consists of the objective function, the final solution matrix,
the variables in solution, and the optimal functional value. In addition,
Shadow Prices or opportunity costs are printed. Shadow Prices provide useful
information on the "cost" of having certain constraints, or the increased pro-
fit to be obtained by 'relaxing' a particular constraint.
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For example

:

Constraint 1: 2X{l) + 2X(3) < 5-0
To this constraint, slack variable X(l) is added to make it an equality. In

the final solution, X(l) is not in solution. The optimal maximum functional
value is 20. The 'Shadow Price' on variable X(l) is 2.0. This means that if

we relax this constraint to 6.0, the optimal maximum value could be 22.0. For

every unit the constraint is relaoced, the functional value will be changed by

the Shadow Price. The Shadow Price holds until the constraint is no longer
binding. The same logic may be applied to "GE" type constraints with surplus
variables. For interpretation of Shadow Price for structural and artificial
variables, the user is referred to texts under headings such as "Dual Algorith
Interpretation of the Dual", and "Opportunity Costs".

Basis variables refer to those variables which form the original identity
matrix. The variable numbers are listed in the order they were added to the

constraints. The number of basis variables will always equal the number of

constraints. To determine whether a basis variable is a slack or artificial
variable, refer to the coefficients of these variables in the objective func-

tion. A slack variable will have a coefficient of 0.0.

MESSAGES

PROBLEM TOO LARGE : More than 300 variables or 100 constraints on input or

during addition of slack, surplus, and artificial variables.
NORM FOR CUTOFF : Value of Main Parameter Number 2, either supplied or

default.
ERROR IN SIMPLX : Source Program Error. See a consultant.
SOLUTION UNBOUNDED : Constraints do not form a closed space. Optimal

functional value is infinite.
NUMBER OF ITERATIONS : Number of row operations needed to calculate final

solution. For multiple requirement vectors, number is not cumulative.
ACCURACY ACCEPTABLE or ACCURACY NOT ACCEPTABLE : Comparison with Main Para-

meter Number 3-

VARIABLE ADDED
NEW BASIS VARIABLES ARE : Iterations either inaccurate and new variable added

or, during execution of multiple requirement vector, a new variable had

to be added to make problem feasible (requirement vector positive)

.

NON-RESOLVABLE TIE : Cannot occur mathematically. Only reason for occurance
is due to rounding error in machine. Can be corrected by incrementing
or decrementing requirement vector by a small amount. Perform this
only for constants of same value. (Use Parameter 7).

Other messages should be self-explanatory.

IV. Special Comments

Speed and accuracy can be increased by observing the following suggestions

l) Never make Parameter 3 (accuracy check) larger than (O.l) X (number of
significant digits in table). For example, if numbers in the table are
h, 5, .001, 86, 95-32, you have "one" significant digit. Set Parameter 3

to *.l*.

•y/wi»^''ji';v.v
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2) Scale numbers in table to get them into same range. For example^ if
table entries are of the order 10-^, and the requirement vectors are of
the order 103, scale requirement vectors to 10-^ and rescale solution by
10''. The objective function may also be rescaled in a similar manner.
Rescaling essentially reflects the number of significant digits.

Example s

The problem:
Minimize -.75X(l) + 150X(2) -.02X(3) + 6x{k)
Subject to the following constraints:

Constraint (l)

.25X(l) -60X(2) -.Ol+X(3) + 9X(^) < 0, 1, 2
Constraint (2)

.05X(1) -90X(2) -.02X(3) -3X(1+) < 0, 1, 2

Constraint (3)

1X(3) < 1, 2, 3

Could be set up on cards as follows

:

// EXEC SOUPAC
//SOUPAC.SYSIN DD *

L-P^-1.E20*^*.1*() ()(l).

MIN*- . 75^-^150^^- . 02^^6*

.

LABOR *.25*^-60**-.0J+**9*"LE"^0*-^l*^2*.

LAND^.05^^-90**-.02*^-3.0*"LE"*0*^l**2*.
CASH(2)*1*(iV'LE"*1*^2**3-'^.

EW PROGRAM
END SOUPAC
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This problem will result in an unbounded solution with requirement
vector number one. The problem terminates without performing calculations
on the other vectors.

Note insertion of sequential zeros on CASH card.



QUADRATIC PROGRAMMING

I. General Description

This program maximizes the quadratic function cX + 1/2 X-^DX subject to
the linear constraints AX <_b, where c is an n-vector, D is a symmetric
negative definite n by n matrix, A is an m by n matrix of coefficients
or constraints and b is an m vector.

The Kuhn-Tucker theory shows that a solution to the constrained maxi-
mization problem is obtained if and only if vectors X, L, V, and W can be
found such that

:

DX - A^L + V = -c

AX + W = b

where the elements of X, L, W, and V are non-negative and the conditions

v'^X=0 and w'^L-0 are satisfied. To find these vectors, artificial vectors
Z^ and Z^ are added to the first equation and a y-vector is added to the
second. Simple techniques are then used to eliminate first the Y

and then the Z vax'iables.

References

:

Carr, C. R. and C. H. Howe, Quantitative Decision Procedures in Management
and Economics , McGraw-Hill , 196^+

.

Hadley, G. , Nonlinear and Dynamic Programming , Addison-Wesley , I96U.

Wolfe, P., "The Simplex Method for Quadratic Programming", Econometrica ,

27, 1959, pp. 382-398.

NOTE: Carr and Howe claim that elements of the Vj-vector may not be
entered in the first stage of the simplex procedure. Since this requires
that there exist a solution to AX = b , it is a severe restriction. It

is also unnecessary, and this program does enter W-variables during the
first stage. Otherwise, the procedures used closely follow those of
Carr and Howe.

II. Restrictions

The maximum number of X-variables is UO. The number of x-variables
plus the number of constraints must be <_ 80.

The D-matrix must be negative definite. If this is doubtful, use the
PRINCIPLE AXIS FACTOR ANALYSIS program to extract the eigenvalues. All
must be negative. Semi-definite D-matrices may be perturbed or the user
may limit the number of iterations to be performed. If this limit is

exhausted, final solution vectors will be printed out (see below).

The only form of input is a matrix of data. If there are n x-variables
and m constraints, the matrix should have n + 1 columns and m + n rows,
partitioned as follows:

m^i
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"mm

D (n X n) c (n X 1)

A (m X n) b (m X 1)

Note that this is the c vector, not the -c vector mentioned in the
Kuhn-Tucker formulas. Also note the + sign and the 1/2 coefficient of the

xDx term. All constraints in this type of input are assumed to be < type.
Multiply > constraints through by -1. The equality constraing:

n

L a- .X. = b.

is equivalent to the two constraints Za^^X. < b- and Z-a. .X. < b. .

This matrix can be read in from cards or from temporary storage.

The elements of the w-vector are always non-negative and are to be
considered "slack" for < constraints and "surplus" for > constraints.

The user may obtain the basis vector at the end of each iteration
showing which variables are in the basis and their quantities (option 2).

He may alternatively have the entire matrix printed out after each iteration
(option 3)' The user is cautioned that option 3 can use immense quantities
of paper and time unless the problem is very small.

III. Parameters

The program call card should have the name QUADRATIC PROGRAMMING
followed by these parameters:

Parameter
Number

1

2

3

Use or Meaning

Input Address. SEQUENTIAL 1-15 or CARDS,

Number of Contraints.

Output option:
if final results only

1 if iterated basis vectors
2 for entire iterated matrix

Limit on number of iterations if
desired. Leave blank otherwise. Default
is 1000.
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Parameter
Number Use or Meaning

Pertubation quantity. Punch quantity
to be subtracted from diagonal of D-
matrix between asterisks instead of

parenthesis; e.g., ^.001*. Leave blank
if not desired.

IV. Examples

Example I

Suppose we wish to maximize the quadratic function

F = lOx^ + 20x2 "^ ^5x3 - Ixj'

subject to the constraints

2xo + lx]_X2

2x1 + 3x0 + 1x3 < 50

Ix1

3X1 + 2x.

+ ^.X- < 70

< 60

Since the D-matrix is only negative semi-definite, it should be perturbed
to insure convergence to a solution. The following set of cards would solve
the problem using data matrix input

:

/*ID

// EXEC SOUPAC
//SYSIN DD *

Q"l f./\DRATI C PROGRAMMING ( CARDS)(3)(0)(0)*.001->^.

END SOUPAC
DATA()^)(^F3.0)
-2 1 10
1 -h 20 c

Q ;i^

C-
3 1 50

1 3 70 b

3 2 60

h

M
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X2^

Example II

:

Maximize

F - 8x-L + lOxp - xi^

subject to the constraint

3x2_ + 2x2 < 6

The D-matrix is negative definite. The problem would be set up as follows

/^ID

// EXEC SOUPAC
//SYSIN DD *

QUAD (C)(1) (2).

END SOUPAC
DATA(r'(F2.0,2F3.0)

D -2

-2
A 3 2'

END//'

10

The extreme value of the objective function for this example is .213E02 .



EXACT RESTRICTED LEAST SQUARES

I. General Description

Exact restricted least squares can be used in two ways: l) to include
prior information about a parameter, or 2) to test a linear hypothesis.

Assumptions

:

1) Y = XB + u

2) u 'v N(o,a^l)

3) X is nonstochastic

h) X has rank K < T

5) r=R3 risajxl known vector, R is a j x K known matrix and

g is a K X 1 vector of parameters in the model.

Assumption 5) is^the hypothesis to be tested. Exact restricted least squares
minimizes (Y - Xg^,

)
' (Y-xg^^) subject to r = Rg

, where L , the restricted
estimator, is given by

Sr
= ,-1.. -IpM-l

+ (X'X)""r'[R(X'X)""R']~" (r-R3), and

3 is the ordinary least squares estimator

~1t5 »Var(6j^) = a^[(X'X)"^ (X-X)"^RUR(X'X)~^R']"^R(X'X)~^]

An unbiased estimate of a given that the prior information is true, is

R

(Y-X3j^)'(Y-X3j^)

T - K + j T-K+j

The F test that is given to test the null hypothesis that r = Rg. The F
test is calculated:

SSE- - SSE-
Sr ^

SSE.

T-K

F' '\. F
(j,T-K)
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Parameters

III,

The folloving parameters should follow the mnemonic RLS:

Parameter
Number Description

Input address for raw data. SEQUENTIAL 1-15
and CARDS.

Input Restriction Matrix. SEQUENTIAL 1-15
and CARDS.

Nijuiber of restrictions.

Number of equations.

1 if want cross products matrix printed.

1 if want covariance matrix printed.

1 if want covariance matrix of ordinary least
squares estimates.

1 if want correlation matrix printed.

Subparamet er

s

- equation control cards

1 Number of exogenous variables in the equation.

2 - K+1 Variable number of the K exogenous variables.

K+2 Variable number of the endogenous variable.

The intercept term is referred to as the coefficient of variable 0.

Variable is considered to be an exogenous variable hose value is always 1.

IV. Input

If all input is from cards, the decks are read in the following sequences

1) Raw data
2) Restrictions matrix which must be in the form [R:r] . z,^ -, \

J X (K+1)

V. Output

The program prints out ordinary least squares estimates first as part
of an intermediate step. Also, the F test and a residual covariance matrix
are calculated and printed out under ordinary least squares estimation.
Coefficients, errors, and the F test are calculated under the restrictions
and printed out

.
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Sample Program

Suppose we are estimating a general linear model of the form

where 3 is the intercept term and 3-, and ^ are the coefficients of the
exogenous variables. Let us esimate the coefficients by ordinary least squares
and test the hypothesis that the exogenous coefficients sum to 1. The Re-
strictiom matrix would be of the form:

r = R3 =

1 = [0 1 1]

The following sample program describes the parameters and the order of the
cards needed to obtain exact restricted least squares for this model.

/*ID

// EXEC SOUPAC
//SYSIW DD *

RLS(C)(C)(1)(1)(1)(1)(1)(1).
(3)(0)(1)(2)(3).
END P

END S

DATA(3)(3F10.0)

data deck
[X^X^Y]

END#
DATA(l4)(liF5.0)

0. 1. 1

END#

Note : Variable is not included in

the raw data matrix; but its co-
efficient, 3 5 is included in the

o
restriction matrix

[R:

References

[l] Goldberger, Arthur S., Econometric Theory, New York, John Wiley and Sons,
Inc. , i960.

[2] Judge, G. G., and Yancey, T. A., "The Use of Prior Information in Esti-
mation of the Parameters of Economic Relationships," Metro economics

,

Vol. XXI (196T).

^i^^





STOCHASTIC RESTRICTED LEAST SQUARES

I . General Description

Stochastic restricted least squares can be viewed as a special
case of generalized least squares. Usually we have some prior
knowledge of the approximate size of the coefficients. It seems
reasonable that by using this information we can obtain more efficient
estimates

.

Assumptions:

1) Y = XB + u

2) u -^ (0, a^l)

3) X is a set of fixed variates

k) X has rank K < T

5) r=RB+v risajxl known vector and R is a j x k known
matrix of prior information with the stochastic term v.

6) V ^ (0, y)

We can develop the model in the following manner:

(1) [^] =
[r^

B +
[;;]

^rUn [U'V* ] rQ lOn ^
Where E[^]^ ^ =

[ ^^^
] =

Apply generalized least square to equation (l

B* = [(X'R')$"^[^] ] X'R'$'^[^]
R r

which reduces to

B* = [^ + R'H^'^R]"^ [^ +R'4'"^r]
a

2Since a is usually unknown Theil suggests that a consistent
estimate of a be used to replace it.

TT
2 (Y-XB) (Y-XB) , ,, ;, ^u ^- n +Use s = ^=—- where the B's are the ordinary least squares

i —

K

estimates of B. This new estimator
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B* = [^ + R'H^"^R]~^ [^ + R'^^'^r:

will be consistent and have the same asymptotic moment matrix as B*

.

Using additional information is not enough. We would like to know
if the prior Information is compatible with the sample information.
Theil develops a compatability statistic

6 = (r-RB)' [o^R(X'X)"^R' + Y] "' (r-RB)

which is distributed as Chi-square with j degrees of freedom. This
statistic tests the hypothesis that the sample and prior information
are compatible. Since a2 is usually unknown we must substitute s into
the statistic

6 = (r-RB)' [s^R(X'X)"^R' + Y]"^ (r-RB)

which will have the same asymptotic distribution as 6. Judge and
Yancey [l] develop an alternative feasible compatability statistic:

6* = V
J

They showed that 6* '\^ F
(j, T-K)

The program will print out Theil 's compatability statistic 6

user desires 6*, just divide Theil's statistic by j.

II. Parameters

If the

The following parameters should follow the mnemonic STO

Parameter
Number Description

Input Address for raw data. Sequential
1-15 and CARDS

Input Restrictions Matrix. Sequential
1-15 and CARDS

Number of restrictions

Number of equations

Input address of covariance matrix of prior

information: "V . Sequential 1-15 and CARDS

1 if want cross products matrix printed
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Parameter
Number Description

1 if vant covariance matrix printed

1 if want correlation matrix printed

Subparameters - equation control cards

Parameter
Number

1

2-K+l

K+2

Description

Number of exogenous variables in the equation

Variable numbers of the K exogenous variables

Variable number of the endogenous variable

The intercept term is referred to as the coefficient of variable 0.

Variable is considered to be an exogenous variable whose value is always 1.

Input

If all input is from cards, the decks are read in the following sequence:

1

)

Raw Data
2) Restrictions Matrix which must be in the form [R:r]. ,^^ ^^

J X (K+1)

3) Covariance Matrix of the restriction

Output

Ordinary Least Squares and the corresponding F test are printed out as

an intermediate step. Theil's compatibility statistic and the stochastically
restricted coefficients and errors are also printed out.

Sample Program

Suppose we have the model

Y = X + u
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In addition to this simple linear model we believe that Z B. = 1.

i=l ^

Since we don't know this with complete certainty, we assign a variance
of 1/16 to this prior knowledge.

In matrix form then

r = RB + V becomes

and

[01111]

I- k ^

+ V

V 'v (0, 1/16)

The following sample program describes the parameters and order of
the cards needed to obtain stochastic restricted least squares estimates
for this model.

/*ID

// EXEC SOUP
//SYSIN DD *

ST0(C)(C)(1)(1)(C)(1)(1)(1)

(5)(0)(1)(2)(3)(M(5).
END P

END S

DATA(5)(5F10.0)

'. data deck

END#
data(6)(6f5 .0)

0. 1. 1.

END#
DATA(l)(F10.0)
.0625 [^

END#
/*

References

X, ,X^Y]

1.

= .0625]

Note: Variable is not included
in the raw data; but its co-
efficient, & , is considered to

be in the restriction matrix.

[R:r]

[1] Judge, G. G., and Yancey, T. A., "The Use of Prior Information in

Estimation of the Parameters of Economic Relationships," Metroeconomics ,

Vol. XXI (1969)

.

[2] Theil, H., "On the Use of Incomplete Prior Information in Re-
gression Analysis, "Journal of American Statistical Association, Vol. 58

(1963).

5?^^^^M^
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[3] Theil, H., and Goldberger, A. S., "On Pure and Mixed
Statistical Estimation in Economics," International Economic Review ,

Vol. 2 (1961).

[h] Yancey, T. A., Judge, G. G., and Bock, M.E., "A Mean Square
Error Test When Stochastic Restrictions Are Used in Regression,"
Quantitative Economics Workshop Paper, Department of Economics,
University of Illinois (1970).





THREE STAGE LEAST SQUARES ESTIMATION

General Description

The THREE STAGE LEAST SQUARES ESTIMATION program calculates and prints
out three stage least squares estimates and an asymptotic covariance matrix.

A raw data covariance matrix and two stage least squares residual covariance
matrix are the necessary input. Calculations are carried out as in "Econo-
metric Theory" by Arthur S. Goldberger, pp. 3^7-352. The coefficients may
also be stored for use with the ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS
program.

References

:

Goldberger, Arthur S., Econometric Theory , New York, John Wiley and Sons, Inc.

I96U.

Johnson, J., Econometric Methods , New York, McGraw-Hill Book Company, Inc.,
i960.

Parameters

The parameters appear on the program card following the mnemonic THREE in
the following order:

Parameter
Number Description

Input Address for raw data covariance matrix. SE-
QUENTIAL 1-15. Same as output address for KICLAS.

Output Address for coefficients. SEQUENTIAL 1-15.

Input Address for residual covariance matrix. SE-
QUENTIAL 1-15. Same as output address for ECON.

Number of equations to be estimated.

Niomber of exogenous variables.

Subparamet er s

For each equation a card specifying the variables in the equation must
follow the main parameter card with the following parameters:

Parameter
Number Description

Number of exogenous variables in the equation

Number of endogenous variables in the equation.
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Parameter
Number

3 to N + 2

Description

Variable number of the N variables included in the
equations with exogenous variables first; endogenous
variables next, with the variable on which the system
is normalized last.

Ill . Special Comments

Although the raw data deck is arranged with exogenous variables first and
endogenous variables last, the endogenous coefficients are printed out first,
followed by the exogenous coefficients.

The THREE STAGE LEAST SQUARES ESTIMATION program requires input from
several other SOUPAC programs. The following is an example of the steps
needed to calculate the necessary input.

IV. Example

K1CLAS(T1)(T2)(0)(0)()(1)(1).
ENDP
K2CLAS(T2)(T3)(TU)()(8)(2)*1.*.
(U)(2)(1)(2)(3)(M(1)(2).
(M(2)(5)(6)(7)(8)(2)(l).
ENDP
EC0N(T3)(T2)()(8)()(T5).
THREE(T2)(t6)(T5)(2)(8).

(M(2)(1)(2)(3)(M(1)(2).
(i^)(2)(5)(6)(T)(8)(2)(l).
ENDP

Notice that the equation control cards for both K2CLAS and THREE STAGE
LEAST SQUARES must be in the same order.

Also notice that an ENDP card is required after the equation cards.

1
' V.yvJ^vSNVrN

.^aaacwSsMd^--



THE TRANSPORTATION PROBLEM

I . General Description

The "transportation problem" is a special case of linear programming
and is of interest because of its computational simplicity. Many economic
and business applications of this computation technique have nothing to do

with transportation. The name is derived from its original formulation.
The essence of the problem can best be described by a simple example.

Suppose a manufacturer has 3 factories and he supplies 5 locations
Suppose that the cost per unit from each factory to each location is

given. Also assume that the capacity of each factory is given and the
amount demanded is equal to the total capacity of the manufacturer. The
transportation problem is to find the minimum total cost to ship the
capacity of all 3 factories to the 5 demand locations.

The following tabled example should make this clearer (taken from
reference [l ] )

.

Demand Locations

Factory

Amount
Demand

1

I

20 i

i

30 I

.1 4-

2

$15

UO

35

25
:
115

3

$20

15

UO

60

1+

$20 $U0

30
j 30
I

55
I

25

30 TO

Capacity

50

100

150

300

The amount demanded row has the amount demanded at each location. The
capacity column contains the amount available at each factory. The
middle matrix is the cost matrix of shipping one unit of goods from
factory i to location j where i = 1, 2, 3, and j=l, 2, 3, ^, 5-

Notice that the sum of the capacities must equal the sum of amount
demanded

.

The idea is to minimize the total transportation cost while
specifying that all goods must be shipped and all demands must be
satisfied. The computation technique used to solve the above problem
is described in most linear programming texts (see references).
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II. Parameters

III

The parameters follow the letters TRN,

Parameter
Wumher Description

Input address of the supply capacities,
and SEQUENTIAL 1-15-

CARDS

Input address of the amount demanded. CARDS
and SEQUENTIAL 1-15-

Input address of the cost matrix.
SEQUENTIAL 1-15.

CARDS and

Input

Both the supply capacities and the amount demanded are read in as row
vectors. If all the data comes from cards the data decks must be ordered:
supply capacities, amount demanded, and then the cost matrix.

IV. Output

Output consists of the optimal transportation order printed in matrix
form, the total cost of transportation, and a sensitivity analysis showing
the maximiim reduction of cost of shipping from supply point i to demand
point j and leaving the present solution optimal.

Example

/*ID

// EXEC SOUP
//SYSIN DD *

TRN(C)(C)(C) .

END S

DATA (3)(3F5.0)
50. 100.
END#
DATA(5)(5F5.0)

150,

25.

END#
DATA(5)
10.

20.

30.

END#
/*

115.

5F5.0)

15.
^0.

35.

60,

20,

15.

1+0,

30,

20,

30,

55.

70,

Uo,

30,

25.

VI References

.1] Dorfman, R., Samuel son, P. A., and Solow, R. M. , Linear Programming and
Economic Analysis .

[2] Hadley, G., Linear Programming .



SPECTRAL ANALYSIS SECTION
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AUTOCORRELATIONS

I. Description

AUTOCORRELATIONS is a program designed to perform univariate spectral
analysis of time series data. No cross spectral calculations are made by
AUTOCORRELATIONS.

II. Input

The input to AUTOCORRELATIONS may be from cards or sequential storage.
Each time series must be input as a column vector. If a matrix, each column
of which is a time series, is input to AUTOCORRELATIONS, a univariate analysis
will be performed on each column.

III. Usage

The parameter string for AUTOCORRELATIONS is

Parameter
Number

1

2

Description

Input address. Cards or Sequential 1-15.

Minimum number of lags for which spectral estimates
are to be calculated. This value must be - 2.

Maximum number of lags for which spectral estimates
are to be calculated. This value must be - (series
length - 2)

.

Incremental value by which the value of parameter 2

steps up to the value of parameter 3.

N-umber of lags, including 0, for which the autoco-
variances are desired. If this value is less than
parameter 3, then it is ignored.

An eight column matrix with each row consisting of,
from left to right, the frequency, the autocovariance
for the corresponding lag, the autocorrelation co-
efficient for the corresponding lag, the raw spectral
estimate, the raw spectral density estimate, the
smoothed spectral estimate, the smoothed spectral
density estimate, and the log (base 10) of the
smoothed spectral density estimate can be output to

Sequential 1-15 • The final matrix output consists
of the vertical augmentation of all the submatrices
generated according to parameters 2-U.
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IV Printout

The printout, all of which is by default in AUTOCORRELATIONS, consists
of the autocovariances and autocorrelations of the series up to the number
of lags necessary to calculate the spectral estimates specified in pairameter

3, or up to the number of lags specified in parameter 5 in case it is larger
than parameter 3, the mean and variance of the series, and the data referred
to under parameter 6 above.

V. Calculations

The autocovariances are estimated by

=K = 1 <i ('<t-^»\.k-^'

where

^ = I ^ t=i ^^t

and N is the series length.

The "raw" spectral estimates R(f), f=0, 1/21-1, l/M, 3/2M,..., 1/2 are

given by

M-1
R(f) = 2(1 + 2 Z

^^'l
C^ cos 2Trfk)

The smoothed spectral estimates are given by

S(f) = 2(1 + 2 E J^I^
Cj^w^ cos 27Tfk)

where the w 's are the Tukey-Hanning smoothing weights, and
K.

W^ = — (l + COSTTk/M)

The respective densities are obtained by dividing R(f) and S(f) by the sample
variance of the series.

VI . Example

Suppose we wish to obtain the spectral estimates for a series of length
UOO for from 10 to 30 lags in steps of k lags. Furthermore, suppose the
series is punched on cards in 20FU.0 format. A possible SOUPAC program would
be:

IdOftTkiiAKdS^
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/*ID (accounting information)

/ / EXEC SOUP

//SYSIN DD *

MATRIX.
M0VE(C)(S1).
TRA(S1)(S2).
ENDP
AUT0(S2)(10)(30)(U).
ENDS
DATA(U00)(20FU.0)

data deck

II

END#
/*

References

Bendat , J. S., and A. G. Pier sol, Measurement and Analysis of Random Data ,

John Wiley and Sons, New York, 1966.

Blackman, R. B., and J. W. Tukey, The Measurement of Power Spectra , Dover
Publications, New York, 1958.

Fishman, G. S., Spectral Methods in Econometrics , Harvard University Press,
Cambridge, Mass., 1969-

Granger, C. W. J., and M. Hatanaka, Spectral Analysis of Economic Time Series
,

Princeton University Press, Princeton, N.J., 196U

.

Jenkins, G. M. , and D. G. Watts, Spectral Analysis and Its Applications ,

Holden-Day, San Francisco, 1969.

Yaglom, A. M., Stationary Random Functions , translated by Richard Silverman
Prentice-Hall, Englewood Cliffs, N.J., I962.





CROSPA

I. General Description

CROSPA (Cross-Spectral Analysis) is a program made up of a nimiber of

spectral analysis subroutines originally written at Princeton and which has

been organized and adapted to the SOUPAC system for the purpose of cross-
spectral analysis of multivariate time series. The SOUPAC office wishes to

thank Dr. R. M. Leuthold and Tom Jarvis for their assistance in obtaining the
subroutines comprising CROSPA.

For each time series input to CROSPA, the autocovariances up to a number
specified by the user, raw spectral density estimates, and smoothed spectral
densities are calculated and printed. A cross-spectral analysis is performed
for each of the possible pairs from those time series input to CROSPA. Cross-

covariances, raw and smoothed cospectral density estimates, raw and smoothed
quadrature spectral density estimates, cross amplitude spectrum density
estimates, gain, phase and square coherency estimates are all calculated and
printed.

II . Usage

The parameter string for CROSPA is

Parameter
Number

1

2

Description

Input address. CARDS or SEQUENTIAL 1-15-

Input address for filter coefficients (see Section
IV, Filtering , below). Blank, Cards, or Sequen-
tial 1-15 . Usually parameter 2 will be blank.

Input Array

Number of lags to be used in calculations. To per-

form an analysis with a different number of lags,
CROSPA must be called again.

The time series must be input to CROSPA as columns of a matrix. Each
time series in the matrix must be of the same length.

IV, Filtering

In some cases the user will wish to filter the series input to CROSPA.
CROSPA constructs a linear filter using the coefficients at the address given
by parameter 2 and then performs all the subsequent cross-spectral analyses
on the input series after they are transformed by this filter. These co-
efficients must be stored as a row vector.

As a final step, CROSPA constructs "recolored" univariate spectral esti-
mates for the original time series.



The filtering option should only be used with caution by those users
experienced with spectral analysis.

V. Comments

VII

The raw spectral estimates are the unweighted finite Fourier transforms
of the auto- and cross- covariances. The smoothed estimates are calculated
with Tukey-Hanning weights.

The auto- and cross-covariance estimates are calculated using n-p as the
divisor, where n is the number of observations, and p is the number of lags.

VI . Example

Suppose that the matrix of time series resides on SI, that the user wishes
to input the filter coefficients 0.5, 0, -0.5 from a data card punched in
3F5-0 format, and that 20 lags are to be used in the calculations. Such a pro-
gram might be:

/*ID [accounting information]
// EXEC SOUP
//FTllFOOl DD [information to define Si]

//SYSIN DD *

CR0SPA(S1)(C)(20).
ENDS
DATA(3)(3F5.0)

0.5 -0.5
END#
/*

References

Bendat , J. S., and A. G. Pier sol. Measurement and Analysis of Random Data ,

John Wiley and Sons, New York, I966.

Fishman, G. S., Spectral Methods in Econometrics , Harvard University Press,
Cambridge, Mass., I969.

Granger, C. W. J., and M. Hatanaka, Spectral Analysis of Economic Time Series ,

Princeton University Press, Princeton, New Jersey, I96U.

Jenkins, G. M. , and D. Watts, Spectral Analysis and Its Applications ,

Holden-Day, San Francisco, 1969-
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CLIQUJi ANALYSIS

TI

General Description

This routine is designed to enumerate all third order or higher
interrelationships (communication chain) which exist in a sociometric
matrix. The algorithm is identical to the method described by Harary
and Ross.-^ A communication chain is considered to be any submatrix of
order three or more in which all the off diagonal cells are full.

Restrictions

The maximum dimensions for an input array are 200 x 200. Input may
come from cards or any temporary storage area. The array must contain
only zeroes and ones in its elements. Any number greater than zero is

considered to be one; therefore, care should be used in constructing the
array. Symmetry in the input matrix is not necessary since the program
automatically forces symmetry through element-wise products. It is

suggested that TRANSFORMATIONS be used to modify input arrays when various
cut-off points are used to distinguish ones from zeroes.

III. Parameters

The name CLIQUE ANALYSIS appears first on the program call card and
is followed by the following parameter:

Parameter
Number Use or Meaning

Input Address of data array.

CARDS or SEQUENTIAL 1-15-

IV. Special Comments

The following is an illustration of the clique detection concept

Data matrix:

1 1

1 1

1 1 1 1 1

1 1 1

1 1 1 1

1
-)

1 1 1

1 1 1 1 1

1 1 1
1 1 1
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Clique (1) 1, 2, 3

Clique (2) 8, 6, 7, 9
Clique (3) h, 3, 5

Clique (k) 3, 5, 6

Clique (5) h, 5, 7
Clique (6^ 5, 6, 7

Tlarary and Ross, "A Procedure for Clique Detection Using the Group Matrix",

Sociometry, Vol. 20, No. 3, 1956, pp. 2- 5, 215-



PAIRED COMPARISONS

I. General Description

Paired comparisons is a method of obtaining empirical estimates of
the form "stimulus j is judged greater than any other stimulus i." Each
stimulus in turn serves as the standard; that is, all possible pairs of
stimuli are compared. With n_ stimuli, there are n (n-l)/2 pairs.
Comparisons of a stimulus with itself is disregarded; it is assumed
that a proportion of 0.50 would result. In the following m = no. of
subjects = sample size.

Each subject's preferences are tabulated, and the total number of
times he preferred each stimulus is computed producing, A , an n x n

matrix of I's and O's , k = 1, m. Totals for each stimulus and a grand
total are computed for each subject and this m x n + 1 matrix is

referred to as individual preference sums. The individual tables, A ,

are summed over all subjects to form an n x n frequency matrix F,

whose elements (fij) denote the observed number of times stimulus j was
judged greater than stimulus i.

II,

The matrix of proportions, P, is then computed from F, so that p. ,

is the observed proportion of times stimulus j was judged greater than"^

stimulus i. The matrix X is derived from P by reference to the normal
curve; x. . is the unit normal deviate corresponding to the element p...
These are the sample estimates of the values required to determine the
scale values of the stimuli. The scale values are computed by summation
producing s

.
, a least squares estimate of the scale value of stimulus j

.

J

Input

Both an indication of ordering for each pair and an array of
subjects' choices are required. The former must be given as a set

of pair subparameter cards and the latter as an observation of
data for each subject in a data deck.

In the subjects deck one number is used to denote the subject's
choice for each pair. This choice may be "is greater than,"
"is better than," "is brighter than," etc. This number is 1 if

the subject chose the left, or first stimulus, 2 if the subject
chose the right or second stimulus. No other coding is acceptable

C. The pair cards consist of one mention each of every possible pair
of stimuli. The order of the pairs is the same as the order of
the subjects' choices, i.e. pair 1 corresponds to item 1 of the

subject array. The order of the elements in the pairs is reflected
in the subjects' choice deck, if (5»T) corresponds to a 1 then
the subject chose stimulus 5 over stimulus 7) if (7 55) were the
pair, a 2 corresponding would mean stimulus 5 preferred. Note that
one set of pair specifications serves for all subjects.
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III. Formulas and Calculations

A. INDIVIDUAL PREFERENCE SUMS

Let A be an individual preference frequency table, a. , is an

element of A, i=l, n, j=l, n, where n is the number or stimuli

a. . = 1 if an individual chose stimulus j over
stimulus i.

a. . =

a. .
= a. . =

11 JJ

if the individual chose stimulus i over j,

no stimulus is compared with itself.

Individual preference sum for stimulus j = Z a.

.

i
^J

Error messages concerning incorrect frequency tables refer to the
configurations of Table A. A can be correct only if subject data
and pair cards are correct

.

STIMULUS PREFERENCE FREQUENCY TABLE, F

Given the matrix A for each of m subjects

Stimulus preference frequencies = f
ij

m
Z a. .

k=l ^J

TABLE OF PROPORTIONS, P

If m is the sample size, i.e. number of subjects, then,

f.

P.
ij

1^

m

D. TABLE OF NORMAL DEVIATES, Z

Let p. . be an element of the table of proportions

Then let
/"

ij
log (1/p. . )

e. .
-

2.51551T + .802853xe..+ .010328xe7
1.1

1i -J

^^ 1. + l.U32788xe. .+ .l89269xe..+ .001308xe^.

producing a z for each e... Critical values of p occur at , 1

and . 5 so adjustments are'^made for these values before the formula
is applied and sometimes after.
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E. SCALE VALUES, S

Zz. .

s .
=

J
, where n is the number of stimuli

Z s
Then total scale =

. ,1

J

A row of scales and a total of length n + 1 is calculated.

IV. Output

Matrices for individual preference totals and S, scale values, are
always printed. Other intermediate results F, P and Z may "be printed
on option. All matrices may be stored on option. All results are printed
in F format. F, P and Z are n x n matrices, individual totals and S

are m x n + 1 and n + 1 respectively (see Section III for calculations).
The A matrix is printed only in an error situation.

V. Restrictions

A. The maximum number of stimuli is U2. There is no restriction on the
number of subjects. Each stimulus must be paired with each other one.

Subjects should have complete data.

B. No more than 300 pairs should be specified per pairs statement.
Additional pairs statements may be inserted to a maximum of 88l
pairs {k2 stimuli).

C. Caution: The number of stimuli, n, and the number of pairs, q,
are in the relation

n(n-l)

^
=-2

•

Any other relationship is invalid.

D. Note if (5,7) is a pair, then (7,5) is invalid. Also, if this is

the first pair then the subject's first choice specification concerns
stimulus 5 vs stimulus 7; (5,5) is invalid.

VI . Parameters

After the program name, PAIRED COMPARISONS, on the call card come
the parameters in the following order:

Parameter
Number Use or Meaning

Input Address of data. CARDS, SEQUENTIAL 1-5-

Output Address of individual preference sums.

Always printed. SEQUENTIAL 1-5-

Q, Output Address of stimulus preference frequency table
SEQUENTIAL 1-5 and/or PRINT; if not desired, leave
parameter blank.
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Parameter
Number Use of Meaning

n Output Address of proportions. SEQUENTIAL 1-5 and/

or PRINT; if not desired, leave parameter blank.

Q Output Address of normal deviates. SEQUENTIAL 1-5

and/or PRINT; if not desired, leave parameter blank.

Scale Values. SEQUENTIAL 1-5, always printed.

Q It is possible to punch the output from these parameters while
executing this program. If you need this option, see the section in
the Introduction on Input and Output. Any storable output may be
punched using the Matrix program.

VII. Examples

A.

/*ID <accounting information>
// EXEC SOUP
//SYSIN DD *

PAIRED COMPARISONS (C)( )(P)(P)(P).
PAIRS (1,2)(3,1)(U,1)(3,2)(2,U)(U,3).
END P

END S

DATA(6)(6F1.0)
122211
222111
121122

I

END #

Print has been indicated for all output except individual preference
sums and scale values which are always printed.

The pairs card indicates that there are h stimuli. All possible

pairs of these stimuli are presented to the subjects, and the subject's

responses are recorded in the order (l,2), (l,3), (l,U), (2,3), (2,U),

(3,^). Some of these pair members have been inverted indicating that

no special order is required, left member or right member preference of

subjects would, of course, be affected by the inversion.

The pairs need not be given in the increasing order of the example,
but at all times the order of the pairs is the order of the corresponding
Subject responses .

The data deck is a set of subject responses for each pair of stimuli.
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B.

/*ID<accounting information>

// EXEC SOUP
//SYSIN DD *

TRA (C).

C0N(900)*1*.
ADD (l,625)(900)(l,625).
OUT( SI) (1,625).
END P
PAI(S1)( )(S2/P)( )(P).

PAI(5,3)(2,8)(1+,16)(T,26)(8,3)( )(U,13).
PAI(25,2U)(23,28)( )(U,12).
END P

END S

DATA(325)(T5F1.0)
Data Deck— 5 cards per subject

END#
/*

This example shows a program for 26 stimuli, 26 x 25/2 = 325 is

the number of pairs required and the number of subject preferences.
Since no more than 300 pairs may be given per pairs statement, at least
two pairs statements are needed; two are shown. The unique pairs may-

occur in any order, the subject responses are in the same order.

The TRANSFORMATIONS program shown is designed to correct subject
responses punched zero/one or blank/one to 1 and 2.

A selection of possible output has been made. Note that
individual preference sums and scale values, as well as normal deviates
and stimulus preference frequencies are printed. The latter is also
stored. This storage implies some further use is made of the frequencies,
perhaps in the missing part of the program.

VIII. References

Torgerson, Warren S. Theory and Methods of Scaling . John Wiley and
Sons, New York; I96O, pp. 166-173.

Edwards, Allen L. Techniques of Attitude Scale Construction . Appleton
Century, Crofts, New York: 1957, pp. 19-52.
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SCALOGRAM ANALYSIS

T. GENERAL DESCRIPTION

The SCALOGRAM ANALYSIS (mnemonic: SCA) was developed to provide a

method of producing Guttman scales automatically without the need of ex-
ternal decisions to determine which items do and which items do not enter

into Guttman scales. Items are grouped together in as few as possible sub-
matrices with each subgroup having a maximum homogeneity within each sub-
matrix. Each item from the total group is chosen to fit into only one sub-
matrix.

The SCALOGRAM program is started by choosing an item from the total
group and then searches the remainder of the items to find an item similar
to the item chosen. Similarity is tested by using an error criteria and a

chi-square test to insure that the items are similar. If the above criteria
are met, this item, is added to the first item and a scale is formed. This
last item is then used to find another similar item and this procedure con-
tinues until either of the two criteria is not met. Whenever a criteria
fails, the scale is terminated and a new scale is started.

SCALOGRAM will only work for dichotomous data and it can be used to
analyze both subject-wise and item-wise. SCALOGRAM differs from Guttman
analysis in three ways: l) It uses an empirical rather than a rational
basis for selecting items to enter a scale; 2) It uses a statistical method
of deciding on groups and for testing the scale-ability of the item;

3) It yields multiple scales rather than reject the scale hypothesis for

the whole item set.

SCALOGRAM can be considered to be more descriptive than the raw data
but less than factor analysis. SCALOGRAM also is unlike factor analysis in
that SCALOGRAM is not bound to linear assumptions about the regressions in-
volved. Factor analysis is set up to study quantitative variables and will
not show correct relationships between qualitative variables, SCALOGRAM will
show what relationships do exist between qualitative variables. (See

Guttman 1950 for a complete discussion of the relation between the scalogram
technique and other statistical procedures.) (See Lingoes I963 for the
complete algorithm for SCALOGRAM.)

II. REFERENCES

Guttman, L. "Relation of Scalogram Analysis to Other Techniques." In Samuel
A. Stouffer , et al

.
, Measurement and Prediction. Princeton, N.J.: Princeton

University Press, 1950 (pp. 172-212).

Lingoes, J.C. "Multiple Scalogram Analysis. A Set-Theoretic Model For Analyz-
ing Dichotomous Items." Educational and Psychological Meausrement XXIII (1963),
5OI-52U.

Lingoes, J. C. "A Multiple Scalogram Analysis of Selected Issues of the 83rd
U.S. Senate." American Psychologist , XVII (1962), 327.
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III. INPUT

Input to the SCALOGRAM ANALYSIS Prograin consists of a rectangular array
of dichotomous variables. Scaling is done on columns. Thus an N x M array
of data will be scaled across the N "subjects" and yield up to M scales.
To scale on the M "items" set the transpose flag in SCALOGRAM (see param-
eters) .

Zero and one are the usual values of the dichotomy. Two is taken as

missing data and distributed randomly among the other codes. Blanks are
zeros. In general 2 is missing data, 1 is one level of the dichotomy and
"anything else" is the other level of the dichotomy.

Labels may consist of up to 28 characters, one label per card. If

both labels and data are read by SCALOGRAM from cards, the labels deck
goes first. If SCALOGRAM is to scale subjects, labels must refer to sub-
jects. Note if labels are not used considerably more core is available
for variables and subjects. If labels are used the data card should be:
DATA(n)(nAU) where n ^ 7-

IV . PARAMETERS

The program mnemonic is SCA. The following parameters appear on the
program card:

Parameter

1

2

3

Description

Input Address

Address of Labels

A 1_ indicates that the matrix should be
transposed

Since the program scales by columns or items, to scale by subjects,
indicate in parameter 3.

V. RESTRICTIONS

Data must be dichotomous (see input section). If data is not of this
form, TRANSFORMATIONS may be used to recode it.

VI . EXAMPLES

SCA(C)(C)(1).
ENDS
DATA(7)(TAU)

'. (labels)

END#
DATA(i+0)(l|0F1.0)

I (data)

END#
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Labels and data are on cards, 28 columns are used for labels and scaling

will be done by rows.

SCA(Sl).
ENDS
DATA(30)(30F1.0)

( dat a

)

END#

Data is on SEQUENTIAL 1 and scaling will be done by columns,
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PROBIT (Mnemonic: PRB)

General Description

This program calculates maximum likelihood estimates for the parameters
A and B in the probit equation:

Y A 4 BX

An iterative scheme is used.

II Restrictions

The input vectors must be equal length k and:

input vector comes from a separate input address.
3 < k < 3000, Each

III. Parameters

Parameter
Number Use or Meaning

Input vector of dosage level.

SEQUENTIAL 1-15-

CARDS or

Input vector of number of subjects tested
at each dose level. CARDS or SEQUENTIAL 1-15-

Input vector containing the number of

subjects -at each level responding to the

drug. CARDS or SEQUENTIAL 1-15-

Output vector of length k containing the
proportion of subjects responding to the

various close levels of the drug. SEQUENTIAL 1-15,
and/or PRINT.

Output vector of length k containing the values
of the expected probit for the various levels of
the drug. SEQUENTIAL 1-15 and/or PRINT.

Printed output consists of:

1 - Estimate of intercept constant A

2 - Estimate of probit regression coefficient B

3 - Chi-square value for a test of significance of final
probit equation

X2 =

R. - N.P.
1 11

,2

r=i
%Pi^i ^IT

where Rj_ ^ number of responses (input address 3)

Ni - number of objects tested (input address 2)

Pj_ = cumulative normal distribution values corresponding
to Zj_ where Zi = (A + BXi) - 5

where A and B are from final probit equation
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k - Degrees of freedom for X^
d.f. = k - 2

References:

D. J. Finney, Protiit Analysis , Second Edition, (Cambridge University Press

1952).

The program was adapted from the IBM Scientific Subroutine Package,
36OA-CM-O3X, Version III, page UU.

IV. Example

If two or more input addresses are cards, the cards must be stacked
in order of their parameter numbers. For example:

/*ID

// EXEC SOUPAC
//SOUPAC.SYSIN DD *

MAT.
MOVE ( CARDS )(SEQ2)
END P

PRE ( CARDS ) ( SEQ2 ) ( CARDS ) (PRINT )

.

END S

DATA(1)( )

: cards for SEQ 2

END#
DATA(1)( )

Cards for Parameter 1

END#
DATA(l)( )

Cards for Parameter 3

END#
/*

NOTE The mnemonic for PROBIT is PRB, nor PRO,
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RANDOM NUMBER GENERATOR

I . General Description

This program generates a matrix of random niimbers or digits from a

specified probability distribution.

;i. Main Parameter Card

Parameter
Number

3

1+

5

Subparameter Cards

Description

Input Address of 9 (nine) digit integer, used as a

starting point for the random nijmber generator.
CARDS or SEQUENTIAL 1-15.

Output Address of random numbers matrix.
1-15. PRINT is not valid.

SEQUENTIAL

Number of rows in output matrix of random numbers

.

Number of columns in output matrix of random numbers

,

Output Address of 9 digit integer which is finishing
point of the random number generator. Do not
specify PRINT since number is automatically printed.

To specify the distribution of the random numbers, choose one of the sub-
parameter cards listed below. Refer to Appendix E for definition of these dis-
tributions, as well as information on obtaining distributions not given below.

BINOMIAL (N)*P* The sum of N independent trials , each with probability
P of success.

RECTANGULAR *01**e2*,

NORMAL *N**a2*,

GAMMA *a**3

DISCRETE (n).

Sometimes called the continuous uniform distribution.
The probability of each interval in [01,02] of fixed
size is the same.

Here N is the desired mean of the normally distributed
variables, and O'^ the variance.

The Gamma distribution with parameter 3 and a degrees
of freedom, a should be integer valued. Note that

Gamma * — ** 6*. is the chi-square distribution with
n degrees of freedom, while Gamma *1.**X*. is sometimes
called the negative exponential distribution with
parameter X.

Yields random digits from to N, each with equal
probability of occuring.
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IV. Special Comments

If this program is used with the same integer starting point, it will
generate the same numbers. Thus, use Parameter 5 to output the finishing
location, and then pass that address as the starting location for the next

use of this program.

It should be noted that time requirements for generating random numbers
will vary greatly .among the various distributions. More specific information
is available from the SOUPAC Office.

V. References

IBM System/360 Scientific Subroutine Package (360A-CM-03X) Version 2,

page 5^-

RR
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UTILITY PROGRAM

I. General Description

The UTILITY program has been designed to handle small utility functions
which do not necessitate or justify the creation of a unique program within
the SOUPAC system. The following statements will invoke the UTILITY program.

UTILITY.
(insert subparameter card or cards here
END P

The following sections describe the functions of the various subparameters

.

II. PRESORT Program

The PRESORT Program is presently the only program in the UTILITY program.
It is used to set up the data cards to be input into the IBM SORT/MERGE
package which will be executed following the present SOUPAC program and
before another SOUPAC program which will use the sorted data for an input.

SORT (0 or 1)(0 or l){Y^) (V^).

Parameter
Number Use or Meaning

1 if data is to be sorted
1 if data is to be sorted

in ascending order.
in descending order.

2 if data to be sorted is

1 if data to be sorted is

in single precision,
in double precision.

3 through n < 20 indicates the variable or variables to be sorted
with the later variables, if any, varying most
rapidly.

SOUPAC program in which the UTILITY program appears,
. must appear

:

Following the owui^u jjl^^j.

the following card must appear

// EXEC SOUPSORT,INPUT=Snn,OUTPUT= Smm.

where nn and mm represent the two digit equivalent of the sequential unit
numbers to be input to the sort and output from the sort to the next SOUPAC
program. The two units must not be the same.

The next card will start the next SOUPAC program which will operate
under the assumption that the sorted data has been supplied on the

specified sequential unit in the output of the SOUPSORT program.

// EXEC SOUPAC,DISP=OLD
//SYSIN DD *

(Your program which uses the sorted data).
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The example given below is for sorting cards input data so that it

may be input into a FREQUENCY program which uses variable 5 as a control
variable

.

/*ID identification card information
// EXEC S0UPAC
//SYSIN DD *

MATRIX.
M0VE( CARDS) (Si).

END PR0GRAM
UTILITY.
S0RT(O)(1)(5).
END PR0GRAM
END S0UPAC
DATA(10)(10F5.0).

(user's data deck)

END #

// EXEC S0UPS0RT,INPUT=SO1,0UTPUT=SO2
// EXEC S0UPAC,DISP=0LD
//SYSIN DD *

FREQUENCY ( S2 )

.

T¥0.
PER(1)(1)(1).
C0NTR0L(5).
END PR0GRAM
END S0UPAC
/*

The data on SI is sorted in ascending order on variable 5- The data is

passed to the SOUPSORT job step on SI in double precision. This data is

sorted on variable 5 and then output onto S2 in double precision. It is

then input into the FREQUENCY program of the next SOUPAC job step, whereupon
analysis continues.

III. Notes, Restrictions, and Ideas

1. The default output from MATRIX is in double precision

2. The output from TRANSFORMATIONS is in single precision

3. Only one utility program is allowed per SOUPAC program

h. If other sequential units have been used during the first SOUPAC
prograjn besides the one passed to the sort job step, they are still
intact and usuable in the second SOUPAC program due to the DISP=OLD
parameters

.
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OPTIONS TO A SOUPAC JOB:

FARMS, PROLOG CARDS, AND $-CONTROL CARDS

A. FARMS

Farms are argioments to the keyword 'Parameter,' contracted into
the keyword 'FARM', which give instructions to a processor rimning under a

360-system. In this context, SOUPAC is a processor running under a 36O
system. FARMS are always coded on an EXEC card and have the following form:

/ / EXEC SOUPAC ,PARM= ' OPTl , 0FT2

,

,OFTm'

The permissable options to "be used as SOUPAC FARMS are listed below with an

explanation of their use and function. Note that the default is underlined,
that is, // EXEC SOUPAC is equivalent to // EXEC SOUPAC ,FARM= 'OPTl,0FT2. .

,

where the underlined FARM is to be taken as one of the list of options in the
FARM string in the example. These FARMS give the SOUPAC system instructions
in the same way that parameters give SOUPAC statistical or data management
programs instructions.

1. NODYNAM or DYNAM

NODYNAM implies that a non-dynamically allocatable version of the
library of statistical procedures is to be used. This version will
run in some 150K of core and will handle a lesser number of
variables than the dynamically allocatable version. DYNAM will use
the dynamically allocatable version of any program requested which
will handle more variables in an arbitrarily specified amount of
core above a certain minimum. If using DYNAM, see the SOUPAC
consultants for a handout on optimal region sizes for particular
numbers of variables.

2. EXECUTE or NOEXECUTE

NOEXECUTE implies that the SOUPAC parameter deck, for which the
Syntax Interpreter is to scan and build intermediate parameters,
should not be executed. NOEXECUTE indicates that only a syntax
check is to be performed. If EXECUTE is specified and no errors
are found by the Syntax Interpreter, the job step will proceed.
If EXECUTE is specified and errors are found by the Syntax Inter-
preter, execution of the step may continue depending upon
whether LET or NOLET is also specified.

3. NOLET or LET

If an error is found by the Syntax Interpreter and EXECUTE has
been specified, execution will proceed only if LET was also
specified. In this case, execution will proceed only through the
last program processed which was completely error free. If NOLET
was specified and errors are found by the Syntax Interpreter,
execution will not be permitted.

k. LIST or NOLIST

LIST indicates that all program cards are to be listed. NOLIST
indicates that only the prolog section of the SOUPAC parameter
deck is to be listed.

\i'>:y^-
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B.

5. PGM or NOPGM

PGM indicates that a complete SOUPAC parameter deck and data decks
follow. NOPGM indicates that only the prolog section and data
deck follow, and that the intermediate parameters are being provided
by the user by over-riding the cataloged procedure. This implies
that the user has previously run a SOUPAC job and has saved the
two necessary data sets so that he may run the same program again.
To perform this saving of data sets correctly, a user should visit
the SOUPAC office first to ensure it is done correctly.

If any error is found by the Syntax Interpreter in the prolog section,
the job step will not continue.

If the job step which generated the intermediate parameter data
sets found syntax errors, execution of the job step in which
NOPGM is specified will continue (if EXECUTE is specified) through
the last program processed which was completely error free regard-
less of whether LET or NOLET was specified in either job step.

Examples

:

To do just a syntax check:

/ / EXEC SOUPAC , PARM= ' NOEXECUTE

'

To execute up to the first program foxind to have syntax errors: i

// EXEC SOUPAC ,PARM=' LET'

To execute up to the first program found to have syntax errors and
use the dynamically allocatable library:

// EXEC SOUPAC,PARM='LET,DYNAM'

.

Note that the PARMS may be listed in axiy order.

PROLOG OF A SOUPAC JOB

Described below are several # control cards which may appear in the
prolog of a SOUPAC job. Within the prolog these control cards may
appear in any order. If prolog control cards are used, they must appear
immediately after the SYSIN card. The Syntax Interpreter determines
the end of the prolog when it reads a card which is not one of these
types. All types have parameters and must be terminated bv a period .

Prolog cards may not have continuation cards, hence all parameter
information must be punched within 80 columns. There is no limit
to the number of prolog cards permitted nor is there any restriction on
the number of any one type. If conflicting information is entered, the
information entered last overrides any previous definitions.

1. f/REPEAT OPTION

The ^REPEAT OPTION is used to repeat sections of a SOUPAC

parameter deck an optional niomber of times. The ^REPEAT card
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which appears in the prolog section will be followed by up to

22 (twenty-two) integer parameters which will indicate the number
of repetitions of up to 22 repeat sequences. The card sequences to
be repeated will be preceded and followed by /S'SREP and #EREP
cards respectively. Example:

/*ID

// EXEC SOUP
//SYSIN DD *

^REPEAT (2).

<additional program cards>
#SREP
CORRELATION (C)( )(Sl).

SQUAEE ROOT FACTOR ANALYSIS (Sl ) (P(F ) ) (20) (C ) (P(F ) )

.

#EREP
END S

In this example the program sequence of CORRELATION and SQUARE ROOT
FACTOR ANALYSIS will be repeated twice. Four card input data
sets would be required for the repeated sections.

Repeat sequences which begin before a main program and end in

a subprogram or which begin in a subprogram and do not end in the
same subprogram are not allowed. Nested or overlapping repeat sequences
are not allowed. Also a #SREP card cannot be immediately followed
by a #EREP card and a single appearance in the deck of either card
will cause an error.

2. ^V-UNIT OPTION

#V-UNIT allows the user to change input and output addresses
in the execution of one SOUPAC job. The form of a #V is as follows:

#Vn (m) (A^) (A^).

where n is an integer 1 through 9i thus there can be at most 9

variable addresses, namely VI through V9; and m is a counter which
determines how many times a variable address may be used before it

assumes the next value in its list of possible values. A]_ A-^^

are addresses which Vn assumes. These can be any valid address.
At the moment, however, forms like (Sl/P) will not work. Note that
CARDS and PRINT are permitted.

Finally, the list of addresses is cyclic; that is, if, after
Aj^ has been used, Vn occurs again in the program, Vn will have the
value A-^, and so on.

/*ID

// EXEC SOUP
//SYSIN DD *

#V9(l)(Sl)(S2)(S3)(Sl+).
#V5(1)(S1)(S2)(S3)(SU).
#REPEAT {h).

MAT.
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( Example, Continued)

#SREP
MOV (C)(V9).
#EREP
HOR (V5)(V5)(V5)(V5)(S5)
END P

END S

This program segment reads k separate card decks, saving them in
temporary storage, and horizontally augments them into one data set.

The equivalent without the use of ^REPEAT and #V would be as follows

/*ID

// EXEC SOUP
//SYSIN DD *

^4AT.

M0V(C)(S1) .

M0V(C)(S2) .

M0V(C)(S3) •

M0V(C)(Sl+) •

H0R(S1)(S2)(S3)(SU)(S5).
END P

END S

Note that the M0V(C)(V9). statement is expanded into four move statements
and V9 takes the values SI through SU. Similarly, V5 takes on the
values of SI through SU.

3. #0LD OPTION

The #OLD option is used to define the number of rows in a

sequential data set created by a previously run SOUPAC job. The
number of rows is then entered into a table in the monitor. This
option should be used whenever the header record on the data set
is not known to have a correct value for the number of rows, and the
user does not want to execute a MATRIX MOVE to count the rows. To
use the option, punch a card with #OLD in the first four columns.
Then code the address and the number of rows in the usual SOUPAC
fashion. The niomber of columns may be coded on the card if desired,
but will be totally ignored. Include this card in the prolog section
of the SOUPAC job.

For example, to indicate that a data set to be input from
SEQUENTIAL 1 has 77 rows you would prepare the following card:

#OLD (SI) (77).
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k. /i^TEST OPTION

There is also available a #TEST option; however, this facility
is complicated and intended for testing purposes within the SOUPAC
office and has no significant advantage for the general user.

5. /S^DEFINE OPTION

Whenever the user wishes to specify the dimensions of a direct access
data set (DISK address), punch ^DEFINE in the first seven columais of
a card followed by the address, number of rows and number of columns
coded in the usual SOUPAC fashion. Include this card in the prolog
section of your program. For double precision matrices, code the sajne

number of rows, but twice as many columns as otherwise. DISK 1 and DISK 2

have default definitions of k^O rows by U50 columns single precision.
If the user desires any other dimensions on these data sets, ^DEFINE must
be used. If the user desires to use any DISK address other than DISK 1

and DISK 2, #DEFINE must be used besides supplying the necessary DD
cards

.

For example, to define a data set for DISK IT with 20 rows and UO
columns double precision, you would prepare the following card:

#DEFINE (DISK 17)(20)(80).

Notice that all prolog cards start with a # in column one and must occur
before any SOUPAC program parameter cards. A #-card in the middle of
the SOUPAC program parameter deck is treated as a comment. There is,

however, a ^-control card, while not strictly a prolog card, which may
occur in the SOUPAC program parameter deck and will not be treated as

a comment. This is the #-zero card and is the only exception to the
statement about # cards being comments if in the middle of the deck.
The #-zero card is essentially a debugging tool to facilitate reading
of dumps if one is needed. It has no particular use for the user.

C. ^-CONTROL CARDS

$-CONTROL CARDS are used to provide additional information
to a SOUPAC program above and beyond what is included in the parameters.
There are 3 $-control cards. All must begin in column one with the character
$ and then continue accross the card without blank columns.

1. $C-B

The $C-B card provides as its arguments the variables to
be used as control breaks for a program which accept control
breaks. The use of this card with a program which does
not accept control breaks is an error. The form of this card
is as follows:
$C-B(Vi)(V2) (Vn).
When V-|_ through Vj^ are variable numbers and n must be less than or
equal to 2k.
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2. $INP

$INP has as its arguments a string of input addresses.
The form is:

$INP(Ai) (A ).

where A-^ through Aj^ are input addresses including cards.

The number of addresses will be determined by the program
accepting the $INP card and will explicitly mentioned in the
program write-up.

3

.

$OUT
$OUT(A. ) (A ).

$OUT has as its arguments a string of output addresses. The
form is the same as that for $INP and the number of addresses
is also determined by the program accepting the $OUT card.

M\iltiple output address will be accepted. See section on
Input /Output multiple addresses.

y.<!£^
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SOUPAC INPUT-OUTPUT AND TEMPORARY STORAGE

I

.

GENERAL

A. Input and Output as Data Types

Consider a set of data which a researcher wants intercorrelated.
To do correlations there is in the SOUPAC library of statistical precedures
a correlation program. Input to the correlation program is the researcher's
raw data; output from the correlation program is a matrix of correlation
coefficients. Similarly, every conceivable program has a particular input;

in fact, perhaps several inputs, and some output.

The nature of the input and output of a particular program will
depend on the program and its intent. For example, raw data variables
are input into a correlation program which outputs a correlation matrix.
But a factor analysis program expects as input a correlation matrix,
and yields as output a factor matrix. In contrast to the singular
relation of the nature of input and output to a particular statistical
program, every program finds its input somewhere and must put its output
somewhere.

B. Input and Output as Data Sources

SOUPAC is designed in such a manner that the researcher can tell
any program where his inputs are and where to put his outputs. Punched cards
are an obvious input source; printed pages are an obvious output source.
But the nature of a punched card deck input into a correlation program would
be that of raw data variables. In the SOUPAC system input and output sources
are also called addresses. Thus, a possible input address for a correlation
program is cards and a possible output address for correlation coefficients
is print. Input and output addresses are parameters to every program in
the SOUPAC system. As the researcher reads a particiilar program write-up
he will notice that the order of the parameters determines the nature of
his input or output and his supplying an input or output address determines
whether or not he uses or gets the particular inputs and outputs.

II. ELEMENTARY INPUT/OUTPUT ADDRESS AND TEMPORARY STORAGE

A. Possible elementary input and output addresses in the SOUPAC
system are these:

INPUT: CARDS, SEQUENTIAL 1, SEQUENTIAL 2, . . .

. . . SEQUENTIAL 15

OUTPUT: PRINT, SEQUENTIAL 1, SEQUENTIAL 2,
. .SEQUENTIAL 15 (See section on pipunched cards

)

Again, CARDS and PRINT are obvious sources. SEQUENTIAL 1 through
SEQUENTIAL 15, however, are input or output names of 15 temporary storage
regions available to the researcher in the SOUPAC system. These 15
temporary storage regions are provided for exactly that purpose, temporary
storage of data. Notice that with this facility a user can save his
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correlation matrix, for example, at SEQUENTIAL 1 and then give SEQUENTIAL
1 as an input address to a factor analysis program. Or a researcher can
construct a copy of his data on temporary storage and then let any number
of programs use the same data as input from the same input address , saving
hiin the effort of making multiple copies of his card deck so that each
program would read its ovm deck. Finally, temporary storage addresses
enable the saving of intermediate results for fiirther processing or
modification by other programs and thereby enable the researcher to
construct his own analysis procedure by providing the appropriate inputs
and outputs to the right programs at the right times.

B. SOUP vs SOUPAC with Respect to Temporary Storage

There are two ways of invoking the SOUPAC system. One can ask

for SOUPAC or SOUP. Note that all 15 temporary storage regions are allocated

to SOUPAC, while only SEQUENTIAL 1 through SEQUENTIAL 5 are allocated to

SOUP. Asking for SEQUENTIAL 6 through SEQUENTIAL 15 vhen running under

SOUP will cause an error and terminate the job.

All of these input-output addresses may be abbreviated as follows:

CARDS

PRINT

SEQUENTIAL 1

C

P

SI (or Tl)

SEQUENTIAL 15 S15 (or T15)

Tl through T15 are alternative abbreviations for SEQUENTIAL 1 through

SEQUENTIAL 15- Tl through T15 are, in fact, abbreviations of TAPE 1

through TAPE 15- SEQUENTIAL 1 through SEQUENTIAL 15 and their abbreviations

are the recommended uses. The Tl through T15 notation reflects a real

technical distinction but has been kept to enable programs using that notation

to run.

C. Multiple Output Addresses

A researcher may want to output to several sources : he may desire
to both print and save some results for later use. He cannot, however,
input from more than one source for a particular input address. The facility
of multiple output addresses has the following construction:

(output addres si /output address^/output address^).

This is the completely general form providing for up to three separate
outputs. Each output must be a different source, however. Thus, (Sl/P/X)
is a valid multiple output address providing for temporary storage at SI,
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a print of the same data, and a punched copy of the data. (See section on

punch for explanation of X). (Sl/P) will print and store but not punch.

The order of the addresses makes no difference. (Sl/P) is equivalent to
(P/Sl). Forms such as (S1/S2), however, are not permitted, nor are (P/P)

or (X/X): one can output only to one sequential and only once to P or X.

The above general form is available only if the output address in
the particular program is marked with an fi.

In all cases, however, the form

(output address l/output address 2)

is valid unless the program write-up explicitly has a restriction.

D. Print is F Form of Output Print Address.

There is yet another form to output addresses. This form is

available only where the researcher finds the symbol Q in the program write-
up and has to do with the kind of printed output. For technical reasons,
most programs print in a form called E-format which is a form of
scientific notation. This form allows the computer to print numbers of
any size. Some programs, for which the output numbers are known to be
constrained, as in correlation coefficients, however, print in a form
called F- format which is ordinary decimal number representation. F-format
generally cannot print numbers larger than a pre-determined size. The
size of number depends on the nature of a researcher's data, but the program
has no way of knowing this, hence, the most general fonn, E-format is used.

The researcher however, can on option specify F-format. To print in

F-format he would use the following output address:

(P(F)) or (P(F)/S1) if he wanted a multiple

output address. Those programs which print in F-format already, as for
correlation coefficients, can be made to print in E-format by using the
following output address:

(P(E)) or (P(E)/S15).

The different forms look like this

E-format

+ O.I23U5E 06

Scientific Notation

I.23U5 X 105

F-format Decimal Number
Representation

+ 123^56.123^5 +123^56.123^+5

All four numbers have the same value correct to 5 places. Notice that F-format
cannot represent a number greater than 999999-99999 in absolute value
whereas E-format can represent the first 5 digits of any number of order of
magnitude up to 1099 . The numbers of digits illustrated for E and F
formats are the pre-determined limits for the size of numbers. E-format is
the more general form but F-format is easier to read.
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In this example of E-format the E 02 part is to be understood as

10 . E 03 would be 103 and E-OU would be 10"^. Thus, .376 E 03 is

.376 X 103 or 376. while .129HE-OI is .129U x 10"^ or .0129^. The sign
following the E determines which way to move the decimal point; left for
negative, right for blank or positive. The number following the sign or
blank determines how many places to move the decimal point.

E. Punched Output (Don't forget to specify CARDS= on ID Card!)

All programs which have output addresses marked with the symbol
Q, can punch output directly by using the X output address. X is the
abbreviation for cards as output. C used as an abbreviation for an output
address will be an error. Punched output generated by the use of the
X output address will be in E-format. (See section above). X(F) is not
a valid form and will be an error.

If punched output is desired in a form other than E-format or
from a program which does not allow the X output address, then the
researcher must make a copy of his data on temporary storage and go to
the MATRIX program and use the PUNCH instruction provided in that
program.

F. Obtaining Additional Input /Output Sources

It happens that 15 temporary storage locations may not be
enough. Additional tenrnorary storage may be obtained by calling
for SI6 through SUO . Use of SI6 through S^+O x-equires the addition of Job
Control Cards to the 36O system cards of the SOUPAC program deck. At
least the first time the researcher should check with SOUPAC consultants
before doing this; firstly to learn to do it correctly if he doesn't know how
already, and secondly, if he knows how, to make sure none of the Job Control
Language has been changed or modified, which can happen due to 360 system
changes or reconfigurations, or SOUPAC system changes, which may not be
announce^ in contrast to SOUPAC program changes whicii woiild have been
announced.

If in special instances even ^0 temporary storage regions are not
sufficient or a situation arises where so-called DISK temporary storage is

required, there can be made available temporary storage regions called
DISKl through DISKUO. Check with the SOUPAC consultants before using
these for the proper Job Control Cards and the proper SOUPAC prolog cards.

G. Using Owner Data Sources or Special Input/Output Requirements
in the SOUPAC system

Users' own tapes or disk packs can be used with the SOUPAC
system for input or output.
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Special input/output requirements can usually be handled -the

COUPAC system provided the requirements can be handled by the 360 system

at all. In such cases check with the SOUPAC consultants.

General problem types of the nature alluded to above would be

multiple me volumes, blocked input/output, formatted or unformatted

i pui/oStput, different kinds of record lengths and
^j^f^^^^^Jf^,:

^^^^

representation due to machine differences or differences m facilitie.

at other computer installations.

iW'mi
/><:
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SOUPAC Glossary of Terms on Data Representation

BIT- a "binary digit; e.g. a or 1. a BIT has two states.

BYTE- (also called a CHARACTER )~8 bits. A BYTE (CHARACTER) has 2^^ (256) states,

CHARACTER- (see BYTE).

,8

CONVERSION- the process of going from one of the three DATA TYPES to another.
For example, the number 6.25 would be represented
in CHARACTER mode as:

11110000 01001011 11110010 11110101

in FLOATING POINT mode as:

01000001 01100100 00000000 00000000

and in FIXED POINT mode as:

00000000 00000000 00000000 00000110

Notice that in the FIXED POINT representation, the fractional part
has been lost.

DATA TYPE- method or mode of representing information. There are three
essential DATA TYPES.

CHARACTER mode
FLOATING POINT mode
FIXED POINT mode

Notice that a single bit pattern has different meanings when interpreted
under each data type.

For example, the SINGLE WORD
11010111 11000001 11100100 11010011

in CHARACTER mode means:
PAUL

in FLOATING POINT mode means:
-.3T50U52^0010TUT5 * 102o

_3T50li52U0010T^75. * 10^2

and in FIXED POINT mode means:
-675158829

The radix point is essential to FLOATING POINT representation and does
not exist in FIXED POINT representation.

DOUBLE PRECISION- a data attribute similar to LENGTH ATTRIBUTE which
specifically indicates that the data item is a DOUBLE WORD in length.
A DOUBLE PRECISION FLOATING NUMBER has 6h bits

a sign bit
a 7 bit exponent
a 56 bit magnitude

2i 16.8 decimal digits
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DOUBLE WORD- two WORDS- also 6k BITS; also 8 BYTES (see WORD). A
DOUBLE WORD has 2^^ states.

FIXED POINT NUMBER- (also INTEGER) a 32 bit data item which takes on
only integer values from

(-2^^) to (231 _ 1)

or equivalently

-21U7U836U8 to 21U7U836UT

The range of FIXED POINT NUMBERS can be represented by

-(2^^) -3 -2 -1 231-1

FLOATING POINT NUMBER- a niomber which is to be internally represented in
a manner similar to socalled "scientific notation." FLOATING POINT
NUMBERS are represented as

S.M * 16^

where

S is the sign + or -.

. is the base I6 radix point
M is the magnitude, where 0<_M<1.

In SINGLE PRECISION, M is 2ii bits long.
In DOUBLE PRECISION, M is 56 bits long.

* is the symbol for ordinary multiplication.
E is a 7 hit exponent.

The range of FLOATING POINT NUMBERS available for both SINGLE PRECISION
and DOUBLE PRECISION can be approximately represented by.

f = -7.2*1075 -5.i+*10 '^ = t i = 5.^*10
'^^ 75

7. 2*10 '^ = f

Notice that the precision does not affect the overall range of values
available. The precision only indicates the number of values which
can be represented exactly within the ranges given.

INTEGER- (see FIXED POINT NUI4BER)

LENGTH ATTRIBUTE- the nimber of BYTES in a data element. For example, a

DOUBLE WORD has a LENGTH ATTRIBUTE of 8. A BYTE has a LENGTH ATTRIBUTE
of 1.
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REAL NUMBER- (see FLOATING POINT NUMBER)

SINGLE PRECISION- a data attribute similar to LENGTH ATTRIBUTE which
specifically indicates that the data item is one WORD long. A SINGLE
PRECISION FLOATING POINT NUMBER has 32 bits.

a sign bit
a 7 tiit exponent
a 2U bit magnitude 2l 7.2 decimal digits.

SINGLE WORD- (see WORD)

WORD- (also SINGLE WORD)—32 bits; also h bytes. A WORD has 2^2 (I129I496T296;

states

.

Example: 01000001 00010000 00000000 00000000

\mt!^smmmi
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Densities of Some Coiimion Probability Distributions

A. Definitions

f(x) will be used, in what follows, to denote the probability density

function (p.d.f .

)

N(lJ,a ) denotes the normal distribution having mean y, and variance a

The p.d.f. is ,p;iven by:

f(x) =
:p

-J for -oo < X < °°

"^2-^0^

here we may have -oo < "u < °o and < a < °o

X (n) denotes the chi-square distribution having n degrees of freedom.

The p.d.f. is given by:

f(x)
1

r(n/2)2

=

n/2

n/2 - 1 -x/2 ^ ^X e < X <

otherwise

here n is a positive integer, and T denotes the well known "gamma function,"
which is defined by

1 (a) = J V e dy
o

a > 0,

V {a) = a! when ot is integer valued (i.e. a positive integer), and we
usually define r(0) = 1.

Y(a,A) or G(a,A) denotes the gamma distribution, with parameters a
(degrees of freedom), and A. The gaimna p.d.f. is given by:

f X.
r(a)

A ,, stt-l -Ax
( Ax ) e < X < °°

otherwise

.

Here v/e require A > 0, and a > 0. Note that with A = 1/2, and integral a.

we have x (2a), while r(l,A) is usually called the "negative exponential
distribution" with pMvameter A.

'mmm
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t(n) denotes the t-distribution with n degrees of freedom. It's p.d.f.

IS

f(x) = r(n/2) +1/2)
oo < X < °°,

r(n/2) s/nnd+xS/n)^""^

where n is a positive integer.

F(n ,n_) denotes the F-distrihution with n degrees of freedom "in the
numerator" and n degrees of freedom "in the denominator." The p.d.f. is:

f(x) = r (m/2 + np/2)(nn/np)^l/^ x"l ^^ " ^

r(n^/2) r(n2/2) (l + n^^/n^)^\^''2^
'^

=

< X < °°

otherwise

where n-, , n2 are positive integers. The F-distribution arises in practice
from the quotient (x /n )/(x /n ), where x is x^(n ) and x is x2(n2), hence
the terminology "degrees of freedom in the numerator."

Beta(p,q) denotes the beta distribution with parameters p and q. It's

p.d.f. is

f(x)
- r(p+q) xP-'(i-x)^-^

^^""^ r(p)r(q)
< x < 1

= otherwise

Be(l,l) is constant on the interval (O, 1/2) and is commonly called the
rectangular, or uniform distribution on (0,1/2)

Cauchy(t) denotes the cauchy distribution with parameter t. The p.d.f.
IS :

f(x) =
+2^2t + x

_oo < X *^ °°

where t is a positive scale parameter. The graph of this distribution
resembles that of a Normal distribution, but the Cauchy distribution behaves
more pathologically.

Relations Among Distributions

We will need to introduce some notation:

O/ means "distributed as", or "has the distribution."

I.I.D. is an abbreviation for "independently and identically dis-
tributed."

will be used to denote a random variable, and sometimes will
be indexed as X.

.

1



{X.}
i 1=1

3D

denotes a finite sequence of random variables, or more informally,

an ordered (finite) collection of random variables.

reads as "is equivalent to the following".

F(c)=P[x^'C] is the probability that the random variable x is less than C

F(c) is called the cumulative distribution function.

6

T

8

9

10

11

12

13

li+,

15.

X ^ N(y,a") <;=^ {X-\i)/a % n(0,1).

If X '^^ n(0,1), then X" ^ x'^d)-

If {X. }
." are IID X^(l) . and Y =^E^ X. , then Y "^ x"(n) •

If X '^^ ^l(0,l), Y -^^ X (n), and if A, Y are independent, and Z = X/ZY/n ,

then Z '^ t(n).

2 \^\
If X^ ^ X"(n. ), and X^ 'v. x (n„ ) , and Y = ^ , then Y -^ F(n ,n^).

1 i ^ li A/n 1^

If X '^ t(n), then Y = X" satisfies Y % F(l,n).

If X^ , X_ are IID N(0,l), then Y = X /X satisfies Y % Cauchy(l).
± c- J- c.

If X is t(l), then X is Cauchy(l).

n n
If X -^ u(- -, -

) and Y = tan X, then Y is Cauchy(l).

X ^ Y(A,n) <^:^ AX ^' Y(l,n).

X '^ X (n) X '^- y(1/2, n/2;

If X '^j y(A, l) then X has what is commonly called the "negative exponential
distribution" with parameter A (denoted exp A),

n

If {X.}.", are IID exp A, then .Z, X. "^ Y(A,n).
1 1=1 "^ 1=1 1

If - y ^ F(n,n), then —-r '^ Beta(m/2, n/2'
m L+A
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APPLICATION OF ABOVE TO RND PROGRAM

With the modest selection of distributions provided and equipped vith
knowledge of the effect transformations have on a distribution (the above list
provides a good start), many additional distributions may be obtained.

EXAMPLE 1 . (Inverse Function method). Given an arbitrary continuous
cumulative distribution function, F(x) and its inverse, F~-'-(y) applied to a

sequence {X.}"^ "^ u(0,l) yields a sequence {X.} ^_^ '^/ F(x).
1 i=i 1 1-1

1 2
EXAMPLE 2 . Knowing that y('5"5 n) is equivalent to x (2n), and using

no. 12 of the above list of relations, we may generate a first matrix of x (n)

random numbers, a second matrix of N(0,l) random numbers, and by element wise
dividing the second by the first obtain a matrix of t(2n) random numbers.

f\:-X"
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Other Programs

In addition to the statistical programs in the SOUPAC system, the SOUPAC

group maintains on OS/360 disk file a library of other programs which are briefly

described below. Details about these programs and the means of accessing them

are available at the SOUPAC Office.

PTSVIEW (Points of View Analysis)

This program performs a factor analytic points of view analysis following

a procedure developed by Tucker and Messick (1963). At the specification of the

user, the program computes either l) cross-products; 2) covariances ; or 3)

correlations from the raw data (usually judgments). The analysis is then per-

formed on this product matrix.

The program may be used for a second "pass" with both the original data

matrix and a second "hypothetical subjects matrix" (containing coordinates of the

idealized individuals) as input. The result is a matrix of hypothetical judg-

ments, one set for each idealized individual; these are the judgments that, under

the model, would have been made by each of the idealized individuals.

T0RSCA (rionmetric Multidimensional Scaling )

This program performs nonmetric multidimensional scaling. The program

computes a geometric representation of a data matrix such that the distances

between the points in the representation best reproduce the order of the entries

in the data matrix. The geometric representation may be in any Minkowski space

(including city-block space and Euclidean space), and the order being reproduced

may be the inverse of the order of the entries in the data matrix. Finally, the

data matrix may be either a rectangular matrix or a symmetric matrix. In the

former case, it is assumed that the space to be derived is a joint space of both

row and column variables.
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TP0LY (Least Squares Polynomial Fit)

Instead of fitting a polynomial in standard form to a set of data points by

least squares, TP0LY fits a linear combination of Chebychev polynomials. The

resulting normal equations are then solved by Cholesky's method. Both coefficients

of the linear combination of Chebychev polynomials and the coefficients of the

equivalent polynomial in standard form are calculated and printed.

This method avoids inverting a possibly ill-conditioned matrix and the

round-off error properties are excellent. However, the variance-covariance

estimates of the coefficients are lost.

UMAVAC (Univariate and Mult ivariate Analysis of Variance and Covariance )

UMAVAC performs univariate and multivariate linear estimation and tests of

hypotheses for any crossed and/or nested design, with or without concommintant

variables. The number of observations may be equal, proportional or dispropor-

tionate, the latter including missing observations and incomplete designs.

Among the possible analyses which can be performed by this program are

regression analysis, including canonical correlation analysis and step-wise

regression analysis, analysis of variance, and discriminant analysis.
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